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ABSTRACT

The ubiquity of cellular technology has woven a variety of services, now axiomatic, into
modern social fabric. Among those services is the ability to provide mobile user location.
Applications of these location-based services include providing directions, emergency ser-
vices, fraud protection, and direct marketing. This work provides in-depth analysis of
cellular positioning, which leverages the Long Term Evolution (LTE) signaling plane tim-
ing advance (TA) parameter for the end of user geolocation. Additionally, we propose a
novel method of augmenting TA-based positioning, Cellular Synchronization Assisted Re-
finement (CeSAR). We simultaneously show CeSAR to be a network performance multiplier
and security vulnerability vis-a-vis the method’s electromagnetically passive nature. Fur-
thermore, we demonstrate how CeSAR improves positioning by adding system information
and mitigating the effects of poor network infrastructure geometry. Through robust statisti-
cal analysis, we derive a theoretical lower bound on TA-based positioning and demonstrate
that a statistically efficient estimator is possible in this context. Furthermore, numerical
studies are conducted with synthetic and empirical data. The real-world data are observed in
actual network deployments found in geographically diverse environments, such as Mary-
land and California. The results not only demonstrate the efficiency of the estimator but
show that accuracy on the order of tens of meters is possible. Indeed, TA-based positioning
is shown to be accurate on the order of 40 m in some scenarios. Additionally, we demon-
strate that CeSAR is able to passively provide improvements ranging from 10 to 254 m over

TA-only positioning.
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Executive Summary

Over the past decade, the world has seen a dramatic increase in web-based interconnected-
ness, which stems largely from the proliferation of cellular technology. Cellular technology’s
role in connecting mobile users has ushered it into a golden age of relevance in the research

community. Cellular technology is thus the focus of network and security researchers alike.

Providing a user location within the context of cellular networks has also long been the
subject of study and marketed as location-based services (LBS). The nascence of LBS is such
that it has been estimated that the general application of this technology for non-emergency
services will generate approximately 15 billion dollars annually [1]. This economic boon
has fueled this direction in mobile device location and the creation of the current corpus
of research. Applications of LBS include location-sensitive billing, fraud protection, asset
tracking, fleet management, surveillance [1], and various other services for autonomous
vehicles and wireless networks. Marketing applications also abound, exploiting a user’s
location for directed advertising and promotions [2]. Finally, as the social fabric of our
society extends into digital domains, services like Facebook and Foursquare increasingly

leverage LBS to share information about a user’s location.

We propose a novel method of passive subscriber geolocation inside a cellular network.
Due to the ubiquity of the Long Term Evolution (LTE) standard, we focus specifically on
this technology but acknowledge that the methodology could easily be translated to other
protocols such as the Worldwide Interoperability for Microwave Access (WiMAX). In the
context of LTE, we submit the signaling plane and specifically the timing advance (TA)
parameter to this end of user geolocation. This parameter is primarily responsible for
managing user mobility in various time division multiple access-based cellular networks.
Specifically, this is accomplished via the TA by advancing or retarding a mobile device’s
uplink transmission time relative to the device distance from the serving base station. In
this way, as mobile devices move throughout the serving area uplink collisions resulting
in changing propagation delays are mitigated [3]. It is, however, well-known that the
TA can be used to estimate mobile equipment distance from serving base stations [4].
Despite this, there is not a rigorous analysis of the best possible positioning accuracy of

this method. Additionally, we propose a method of augmenting TA-based positioning,

XXi



Cellular Synchronization Assisted Refinement (CeSAR), to further improve the accuracy
of TA-based positioning.

CeSAR is an entirely passive method of augmenting TA-based positioning with a simple
sensor located in the serving cell. At the heart of CeSAR is the ability to glean additional
distance information from the TA by learning when the user is scheduled to transmit an
uplink burst. This enables measurement of the time of flight of that uplink burst from the
user to the sensor. This information can be combined with the standard user to base station

distance traditionally inferred from a TA.

In this work, we examine the TA as a means to position estimation both with and without
CeSAR augmentation. We provide new complementary statistical analysis of the TA from
which is derived a lower bound on TA-based position estimation. Furthermore, we use this
analysis to show how certain parameters of LTE have indirectly resulted in it being possible
to provide a consistently accurate position estimate. This has not been possible in older
standards such as the Global System for Mobile Communications (GSM). We use simulated
and real-world data collected in existing modern LTE networks to validate assumptions
about the error distribution of TAs, the lower bound on positioning accuracy, and TA-based
positioning accuracy with and without CeSAR augmentation. In these studies, significant
attention is given to TA-based geolocation in future heterogeneous networks. Our analysis

and field experimentation suggest that accuracies of 40 m to 120 m are possible.
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CHAPTER 1:

Introduction

Over the past decade, the world has seen a dramatic increase in web-based interconnected-
ness enabled largely through the proliferation of cellular technology. Cellular technology’s
role in connecting mobile users has ushered it into a golden age of relevance in the research

community. Cellular technology is thus the focus of network and security researchers alike.

The attention cellular technology has garnered from network researchers is fueled by the
public’s insatiable appetite for faster data rates. Indeed, some estimates project a 1000-fold
increase in cellular network capacity over the next several years [1]. Currently, in North
America, a LTE subscriber uses approximately 3.7 GB a month. Over the next five years,
the average LTE user’s data consumption is expected to increase to 22 GB a month [2].
Increasingly, the solution to this capacity demand is centering on the Long Term Evolution
(LTE) and LTE-Advanced (LTE-A) protocols as the specific enabling technologies. To wit,
LTE subscribers are projected to increase from 1.1 billion in 2015 to 4.3 billion over the next
five years [2]. Additionally, LTE-A subscriptions are projected to increase to 500 million
by 2018, making massive data rates expected from LTE-A a global reality [3]. Given these
projections, it is easy to see why network researchers continue to probe the boundaries
of achievable cellular capacity. Due to the prevalence of LTE, we frame our discussion
throughout this work in the context of this specific protocol, while acknowledging the
potential for the translation of fundamental ideas to other technologies (e.g., Worldwide
Interoperability for Microwave Access [WiMAX]).

The burgeoning ubiquity of cellular networks has also been the impetus for research not
directly related to increasing capacity. Specifically in the arena of positioning in cellular
networks, the Federal Communication Commission’s (FCC) E-911 mandate has been es-
pecially prevalent in stoking the research [4]. This mandate enables emergency services by
requiring cellular operators to provide the location of a cellular device with specific bounds
on accuracy. Put forth in a series of phases, the mandate ultimately requires accuracy to
within 100 m 67% of the time and 300 m 95% of the time for network-based techniques,
and 50 m 67% of the time and 150 m 95% of the time for handset-based techniques [5].



This work in cellular positioning likely served as inspiration for application of this technol-
ogy in other related areas generically termed location-based services (LBS). LBS is a nascent
use of positioning technology; it is estimated that the general application of this technology
for non-emergency services will generate approximately 15 billion dollars annually [6].
This economic boon has fueled this direction in mobile device location and the creation of
the current corpus of work (e.g., [6]-[10]). Applications of LBS include location-sensitive
billing, fraud protection, asset tracking, fleet management, surveillance [6], and various
other services for autonomous vehicles and wireless networks. Marketing applications also
abound, exploiting a user’s location for directed advertising and promotions [10]. Finally,
as the social fabric of our society extends into digital domains, services like Facebook and

Foursquare increasingly leverage LBS to share information about a user’s location.

However, as the cellular market careens towards massive data rates, the market and research
community would be wise to consider the second order effects of these technological
advances. Specifically, user privacy is an emerging consideration. In the context of LBS,
the microcosm of user location privacy is of particular interest. Privacy can be defined
as [11] “the claim of individuals, groups, or institutions to determine for themselves when,
how, and to what extent information about them is communicated to others.” The scope
of this definition can be further refined to consider only location privacy as “the ability to
prevent other parties from learning one’s current or past location” [12]. These definitions
subsume ideas many hold about privacy and simultaneously give pause when location
data sets are used in applications such as sociological and market studies, optimal cell
tower placement, or traffic monitoring [13]. Despite the fact that these data are usually
anonymized, it has been shown that that anonymity may not be as strong as previously
thought. For instance, remarkable precision has been demonstrated in deanonymization
attacks that use computational means such as Markov modeling in attributing specific users

to anonymized data [13].

As technology moves forward, preserving these definitions of privacy becomes more obscure
and less axiomatic. This difficulty stems from two points. First, the preservation of privacy
is obscure because it is nuanced in implementation. One of the main objectives of this
work is to demonstrate how privacy is connected in ways that are not directly obvious to
seemingly unrelated network parameters. Second, the preservation of location privacy is

less axiomatic because users are either not aware of the dangers to their privacy or are

2



apathetic to these dangers. For instance, one study [14] reported that 250 users willingly
turned over two weeks’ worth of their driving GPS data in return for a 1 in 100 chance of
winning a $200 MP3 player. Furthermore, of the 250 individuals in the study, 97 were asked
if their data could be shared with a third party and only 20% refused. The trend indicated
by this study is representative of other similar studies [15]-[17].

This work addresses the problem of mobile device location in cellular networks. To this
end, we enumerate several objectives framed from two different perspectives: the network
operator’s perspective and the vulnerability analyst’s perspective. First, from the network
operator’s perspective, we seek a cellular geolocation solution with the following two

requirements:

1. An accurate position estimate.

2. A minimal impact on network performance.

The first objective follows as an ad oculos requirement since it is obvious that a more
accurate position estimate is preferable compared to a less accurate estimate. However,
more accurate position estimates usually come at a cost. For instance, in the case of
certain positioning schemes that will be detailed later, accuracy may be bought by spending
more time training a model [18], [19]. Therefore, rather than search for the most accurate
position estimate, we seek the position estimate that is accurate enough in light of the
second requirement. For instance, in the context of social media, a position estimate that is
accurate to within 50 m may be preferable to a position estimate that is accurate to 10 m if
the former estimate can be made with no impact to the network performance. To the point,
it may be that the latter estimate requires interfacing with the network, perhaps to exchange
positioning requests or to send a reference signal. This exchange requires network resources
that could otherwise be used for raw data throughput. It is in these scenarios where our

solution space lies.

Next, from the perspective of the vulnerability analyst we examine the cellular protocol to
the end of evaluating its ability to preserve a user’s location privacy. Specifically, we seek

to answer the following questions:

1. To what extent is a user’s location information leaked in LTE cellular side channels?

2. What is the cost of accessing location information leakage in LTE?



Location privacy and the accuracy of the position estimate are intrinsically linked in that
they are at least inversely proportional [20]. This inverse proportionality follows from
the fact that as information about a user’s whereabouts becomes more accurate that user’s
privacy necessarily decreases. Thus, as the first question from the security analyst’s per-
spective is answered, the parameters constraining the network operator’s first requirement
are constructed. We will later show that, in particular, the signaling plane carries a sig-
nificant amount of location-based information. Moreover, this information is available in
plaintext to any passive listener lowering the cost of observation and making the observation

reasonably covert.

We then proceed with this dual perspective. In both cases, the most accurate solution
is required such that passive observation is still preserved. We begin in Chapter 2 with
some necessary preliminaries, such as the wireless channel model that will frame the
discussion in the remainder of the work. Chapter 2 then concludes with a survey of modern
positioning schemas, including the positioning protocol currently specified by the LTE
standard to provide mobile user location. The proposed solution approach is then introduced
in Chapter 3. We begin to explore in detail our solution approach in Chapter 4 where we
introduce the main mechanism on which our approach will rely, the LTE signaling plane’s
timing advance (TA) parameter. Chapter 5 then details CeSAR, an entirely passive method
by which more information can be gleaned from the TA in order to improve the position
estimate. Next, in Chapters 6 and 7, we conduct a rigorous statistical analysis of TA-based
positioning. This analysis will reveal an analytical lower bound on achievable performance
and show how, with the advent of tighter timing alignment that supports higher data rates,
LTE has turned a statistical corner. An indirect result of more strict timing alignment is a
much more consistent leak of location-based data than some of the legacy cellular standards
like the Global System for Mobile Communications (GSM). The analytical results will then
be evaluated in Chapter 8 through the use of synthetic and empirical data. It will be shown
that a statistically efficient estimator for TA-based positioning is possible, and expected
performance bounds for the proposed scheme will be developed. The present work and
major contributions are summarized in Chapter 9 before suggestions for future work are

discussed.

The contents of this dissertation have been revised from previous work already published or
in publication by the author. Specifically, Sections 2.1, 2.2.4, 2.2.5, 4.8, 5.3, and 8.1.2 are
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revised from “Location Privacy in LTE: A Case Study on Exploiting the Cellular Signaling
Plane’s Timing Advance” by John Roth, Murali Tummala, John McEachen, and James
Scrofani to be published in the proceedings of the S0™ Hawaii International Conference
on System Sciences in January 2017 [28]. Sections 2.3, 4.1-4.6 and 8.1.1 are revised
from “Cellular Synchronization Assisted Refinement (CeSAR): A Method for Accurate
Geolocation in LTE-A Networks” by John Roth, Murali Tummala, and James Scrofani
published in the proceedings of the 49" Hawaii International Conference on System Sciences
in January 2016 [24]. Sections 4.7, 6.1, and 6.2 are revised from “Maximum Likelihood
Geolocation in LTE Cellular Networks Using the Timing Advance Parameter” by John
Roth, Murali Tummala, John McEachen, James Scrofani, and Robert DeGabriele to be
published in the proceedings of the 10™ International Conference on Signal Processing
and Communication Systems in December 2016. Sections 5.1, 6.4-6.9, and 8.3.2 are
revised from “On Location Privacy in LTE Networks” by John Roth, Murali Tummala, John

McEachen, and James Scrofani which has been submitted for publication.
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CHAPTER 2:
Background

In this section, we present the necessary background and review the current state-of-the-art
in wireless geolocation. First, we introduce the wireless channel as a necessary preliminary.
This is the channel model that the remainder of the background and the main body of
presented work itself, will reference. Next, we introduce various methods of positioning in
the context of cellular networks. Finally, we introduce the current method of positioning in

our target technology, LTE.

This section includes material adapted from work previously published by the author.
Specifically, Section 2.1 is revised from “Maximum Likelihood Geolocation in LTE Cellular
Networks Using the Timing Advance Parameter” by John Roth, Murali Tumala, John
McEachen, James Scrofani, and Robert DeGabriele to be published in the proceedings
of the 10" International Conference on Signal Processing and Communication Systems
in December 2016 [21]. Sections 2.2.4 and 2.2.5 are revised from “Location Privacy
in LTE: A Case Study on Exploiting the Cellular Signaling Plane’s Timing Advance”
by John Roth, Murali Tummala, John McEachen, and James Scrofani to be published
in the proceedings of the 50™ Hawaii International Conference on System Sciences [28].
Section 2.3 is revised from “Cellular Synchronization Assisted Refinement (CeSAR): A
Method for Accurate Geolocation in LTE-A Networks” by John Roth, Murali Tummala,
and James Scrofani published in the proceedings of the 49" Hawaii International Conference

on System Sciences in January 2016 [24].

2.1 Channel Model

In this section, we describe the wireless channel mathematically in the context of distance
estimation. We pay specific attention to errors associated with standard distance estimation,

TA-related error, and non-line-of-sight (NLoS) channels.

In positioning-based models, a common overall representation of the distance relationship



between an anchor point and a position to be estimated is given by
d=d+¢ (2.1)

where d = [cf 1, cfz, ..d 1T are the observed measured distances from the N base stations,
termed in the LTE lexicon enhanced node-Bs (eNBs), d = [d}, da, ..., dn]! are the actual
distances, and & = [£1, &, .. .,fN]T are the set of errors corrupting the true distances.
Distance is defined as d =|| po — p; || where || - || is the Euclidean norm and py = [xo, yO]T
is the actual location of the position to be estimated and p; = [x;, i1 is the position of the
i™ anchor point or base station. We hereafter refer to anchor points exclusively as eNBs
and the mobile device whose position will be estimated as user equipment (UE) in keeping
with the cellular vernacular. The set of measured distances d are then used to determine a

position estimate via
p=r(d) (2.2)

where f(-) is some function making use of available information and p = [X, 717 is the

position estimate. For our application, f(-) represents a fusion of the observed data in d.

The noise vector & is the source of distance estimation error which virtually guarantees that
Il po— P II> 0, and is of particular interest in all types of wireless positioning. As a first

approximation of &, let
&i = Xi (2.3)

such that y; ~ N (0, 0'i2) is a normal zero-mean random variable (RV) with some variance
2 .. . . . .

o;. This is typically used to model measurement noise and may be appropriate in some

channel conditions, for example, if a line-of-sight (LoS) condition exists between the trans-

mitter and receiver [7]. LoS conditions imply that there are no physical obstructions between

the transmitter and receiver in the wireless channel. Common applications of this simplified

noise model include the global positioning system (GPS) and rural multilateration.

Next we expand on (2.3) in order to describe a & that is tailored to errors associated with
TA-based ranging measurements. The TA is a control plane parameter used by the network

to take into account propagation delay between a UE and eNB when synchronizing the



LoS Obstruction

(a) Multipath (b) NLoS
Figure 2.1. The difference in a multipath and NLoS channel

UE’s uplink burst! [22]. The TA is a discrete quantity, thus the error associated with the
TA ranging measurement is classically approximated as essentially a quantization noise
term. Specifically, in LTE, the TA has a quantization interval of 78.125 meters [23], [24].

Therefore, under this ideal model, error can be modeled as
&= w; (2.4)

where w; is the quantization error associated with the i TA measurement error. This
simplification of TA-based error is nuanced, and thus, a significant body of the present
work is dedicated to bringing to light the conditions under which this assumption can be
made. Commonly, this error is modeled ideally as a uniformly-distributed RV [24]-[26].
However, for realistic applications, this model alone may not hold. Research in GSM
and LTE networks has shown that the TA may be more accurately modeled by a normal
distribution [27]-[29] or approximately normal distribution [21], as described by

&= xitw (2.5)

which is consistent with the empirical data presented in this work (cf. Chapter 4). This
indicates that the TA transition areas are not hard transitions as commonly assumed, but
rather have fuzzy boundaries or transition zones. This can be explained by time-varying
channel conditions as well as errors associated with distance estimation at the eNB (which

is ultimately responsible for calculating the UE distance and issuing a TA).

In some use cases, the error cannot be accurately modeled by (2.5) either. For instance,

IFurther analysis of the inner workings and details of the TA will be the exclusive subject of a subsequent
chapter.



in physically dense environments (e.g., urban canyons), the channel is often polluted by
buildings, skyscrapers, and the like, which obstruct the LoS from the UE to the eNB. At
the very least, this results in a multipath scenario, shown in the left pane of Figure 2.1. In
multipath propagation, the signal arrives at the receiver via at least one reflected path, which
will travel some non-minimal distance. There may be a LoS component; however, it is not
guaranteed to be the strongest of the arriving signal components. For instance, two reflected
paths may add constructively at the receiver to provide a combined signal strength larger
than that of the LoS component. In severe cases, there will be no LoS component, as in the
right pane of Figure 2.1, and the channel can be described as non-line of sight (NLoS). In
these scenarios, the distance error will always be positively biased, since all signal paths

travel some non-minimal distance, and the noise model can be extended such that
&= xitwi+1; (2.6)

where 7n; is some positively-biased RV representing the error associated with NLoS con-
ditions between the UE and the i™ eNB. Popular models for 7 include an exponential
distribution [30], a uniform distribution [31], a positively-biased normal distribution [7],
[271], [30], and a Rayleigh distribution [30]. Common applications of this NLoS noise

model include positioning in dense urban environments or indoor scenarios.

Given (2.6), € is a random vector where the probability density function (PDF) of each

element is the result of a double convolution

p=(&) = px(xi) * pa(w;) * py(17;). (2.7)

Depending on what distribution types are used for each RV a closed-form solution for pz(¢)
may not be possible. For now we leave these distributions as generically defined and later

ascribe specific distribution types to them.?

2.2 Approaches to Positioning
In this section, we provide a brief taxonomy of relevant traditional techniques in wireless

localization. We then provide a review of previous work in TA-based positioning. For

2This section was revised from [21].
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the purposes of our taxonomy, the positioning system will consist of several eNBs whose
positions are known and a target to be located. Additionally, the target is assumed to be

emitting a radio frequency (RF) signal with known content and transmit power.

2.2.1 Multilateration

The first class of positioning solutions in our taxonomy is multilateration. In this solution
approach, the distance of the target is estimated from several eNBs. Those distance estimates
are then fused into a position estimate via some nonlinear function, f(-). The first of the
multilateration-based techniques measures the received signal strength (RSS) from multiple
eNBs. Because the strength of the signal is known a priori, a path loss model is used to
estimate the eNB-target distance. This received signal strength model leans heavily on an

exact known broadcast strength and an accurate model of the path loss £ [7], [8] classically
described by

L =vy10log (#) (2.8)

where d is the is the propagation distance, the path loss exponent y models the propagation
environment, and the wavelength A is set by the transmit frequency.

A position can also be estimated through multilateration via time-of-arrival (ToA) calcula-
tion. This solution leverages knowledge of the signal’s time of flight and propagation speed
to calculate the eNB-target distance to produce a circular locus such as that shown in the
left pane of Figure 2.2. Because this technique is highly sensitive to variations in time,
it assumes a very precisely synchronized system. Notably, not only do the eNBs need to
be synchronized in time, but the target must also be synchronized [7], [8]. The position

estimate is then made by some means from the resulting system of equations

(x—x)*+(y—y)* =ds

(x—x2)*+(y — ) = d,
(2.9)

(x—xn)?+ (y — yn)* = di

which, if any error is present, will likely be inconsistent for N > 2 eNBs or underdetermined
for all other N.

11



(a) ToA & RSS (b) TDoA & FDoA

Figure 2.2. The locus geometry for different multilateration-based position-
ing schemas. Note that for the TDoA and FDoA techniques, N — 1 loci are
produced while in ToA and RSS N loci are realized.

The final solution to multilateration is time-difference-of-arrival (TDoA). This technique
uses the time difference of arrival to calculate the position estimate. In this way, the signal’s
absolute time of flight is not needed, rather only the differences in time of flight is required.
These measurements result in hyperbolic loci where the eNBs are the foci of the hyperbolae
described by

(c=x)?+(y=u)?) = (x=x)*+ (y—yp)?) =Adyjy Yij i#j.  (2.10)

One main advantage of this technique over the ToA technique is that, while the eNBs still
require strict time synchronization, the target need not be synchronized [7], [8]3. On the
other hand, TDoA will always produce one less equation in (2.10) than in (2.9), thus while
a minimum of N = 3 eNBs are required for a two dimensional fix with ToA, N = 4 eNBs

is required for a two dimensional fix with TDoA

One notable limitation of multilateration techniques is that they assume the RF signal
is transiting the minimal transmitter-receiver distance. As we have seen in a multipath
environment, and especially NLoS channels, this may not be the case. Therefore, the
performance of these techniques is additionally tied to the assumption of a LoS channel.
This assumption will not hold in some channels which include indoor and dense urban

environments.
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Figure 2.3. The database correlation method of positioning where a radio
signature D is compared to database elements 9; collected a priori at certain
locations. The location at which the closest database element match was
taken is used as the position estimate.

2.2.2 Database Correlation

A popular alternative to multilateration methods is the database correlation technique (also
known as “fingerprinting” or “radio frequency pattern matching”). This technique seeks to
leverage spatial diversity in a multipath environment to improve positioning. To this end,
radio signatures are collected at various locations and stored in some database . Signatures
that have been previously used and demonstrated as effective include the channel impulse
response [33], [34], the RSS [19], [35], observable cell IDs [18], [36], [37], and network
parameters such as the TA [38], [39]. This database of radio signatures is then compared
with measurements made online, 9. The location at which the closest database match
was taken is used as the position estimate. While the database correlation method can be
robust in multipath environments, it has a large database creation (i.e., database training)
and maintenance cost [18], [19]. Additionally, it is easy to see that accuracy can be tied to
database size. Thus, as more accuracy is desired a more granular database must be created
and maintained. Also, as the database size grows, the computational cost associated with

the database search increases.

2.2.3 Timing Advance-Based Positioning
As TA-based positioning is at the center of this work, we now provide a review of previous
TA-based research. This literature survey was previously presented in [28]. The TA has long

been studied as a means to positioning and can be seen as specific cases of multilateration or

3A close relative of TDoA is frequency difference-of-arrival (FDoA) where Doppler shift is used in
conjunction with eNB-target relative motion to describe a hyperbolic system of equations [32].

13



even as database correlation. The TA can provide a rough eNB-target distance measurement
such that ToA techniques can be applied to this specific type of measurement. Additionally,
as will be shown in a subsequent section, the TA has also been used as a radio signature in

fingerprinting databases [39].

2.2.4 The Timing Advance in GSM

The investigation of the TA for positioning applications began before the advent of LTE in
GSM, a legacy protocol. For instance, in [40], the authors discuss the possibility of using
the GSM TA as a mechanism for positioning. They note poor accuracy and suggest forcing
base station handovers in order to get a second TA to improve positioning. They conclude
that the accuracy is not sufficient for TA to be seriously considered by itself as a method for

positioning.

Accuracy concerns are echoed in [5] where it is estimated that the accuracy of the GSM TA
is theoretically 550 meters and practically 2,200 meters. Nevertheless, it is noted that a cell
tower, termed base transceiver station (BTS) in GSM, location in conjunction with the TA
is used in many countries around the world as a means for subscriber localization. This is
also a “fallback” GSM localization technique in the United States if a subscriber cannot be

located with other, more accurate, means.

The authors in [25] suggested taking multiple TA measurements from the same tower and
averaging them in order to improve distance estimation. An analysis of the method is
presented, but no real-world experimentation was conducted. It was noted that their method
will only result in a distance from the BTS, and any further improvement in accuracy will

be the fruit of other means.

In [41], the authors propose the use of GSM TA for traffic state estimation, not for precise
user localization. However, their evaluation oversimplifies the TA behavior in simulation.

Similar to the other studies described thus far, no empirical data are used.

The authors in [26] present the only study we are aware of that uses empirical TA data
observed from a GSM network; however, their application was in finding GSM BTSs and

not user location. Their study was still largely simulation based, and they only presented
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one real-world example.*

2.2.5 The Timing Advance in LTE

The largely unsuccessful first forays into using the TA as a parameter for localization are
probably to blame for the limited amount of research in GSM TA-based positioning. With
an accuracy as low as 550 meters to 2.2 kilometers [5], it is not surprising that the TA did

not receive much attention in the literature initially.

It was not until Jarvis et al. [23] recognized the potential in the TA parameter in LTE
networks that researchers reopened their study of the TA as ameans to positioning. Although
again a simulation-only approach, the authors showed viable positioning accuracy in three
dimensions when using a TA from three and four eNBs. The authors did not address
how using more than one eNB would be possible nor did they assume there was any error
associated with the eNB in issuing the correct TA to the UE. Similar investigations were
conducted using WiMAX technology in [42].

In [38], Wigren uses the LTE TA as a complementary database feature when performing
localization via fingerprinting. Using a heuristic approach to modeling the behavior of the
TA, he noted accuracies on the order of his TA error and suggested his algorithm as an
appropriate fallback technology for positioning for E-911 in LTE if Assisted GPS was not

available.

The authors in [43] used LTE TA as a means for proximity discovery in device-to-device
communications. They showed through simulation that errors as low as 50 meters were
possible for certain eNB geometries. However, their modeling of the TA was also heuristic,

and did not account for any error in the eNB issuing an incorrect TA.

The work represented by [44] is the only published work we are aware of that uses empirical
measurements to validate TA-based positioning approaches in LTE. Their approach did not,
however, focus on characterizing the TA. Rather, similar to Wigren’s approach, they used it
as another feature in a fingerprinting approach to localization with the aim of minimizing
the cost of training their fingerprint database. They also made no attempt to characterize
how the TA value correlated with the true distance of the UE.

4This section was revised from [28].
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In summary, the corpus representing the TA parameter in the literature is conspicuously
sparse. Even more absent are studies conducted with empirical data, thus making modeling

in simulation largely a product of conjecture. 3

2.3 LTE Positioning Protocol

In this section, we describe how the network currently provides LBS to the UE in LTE.
This is done via the LTE Positioning Protocol (LPP) [39]. LPP allows for several methods
of position location: Observed Time-Difference-of-Arrival (OTDOA), Assisted Global
Navigation Satellite System (A-GNSS), and Enhanced Cell ID (E-CID).

A-GNSS is well studied and provides very reasonable accuracy. With the integration of the
required hardware in many modern mobile devices, A-GNSS arises as an adept solution to
the mobile location problem. Despite this, there still exists a legacy population without the
required hardware that must be serviced. Additionally, A-GNSS usually comes at a high
power cost which, given the power-constrained mobile platform, is undesirable. Finally, the
emerging requirement for accurate positioning indoors and in metropolitan canyons requires

an alternative solution [45].

OTDOA is a positioning method where a UE will measure the time difference of arrival of
the LTE Positioning Reference Signal (PRS) from multiple eNBs. This information is then
sent to a network-based Enhanced Serving Mobile Location Center (E-SMLC). With three
or more eNBs, the resulting system of equations can be solved to provide a position estimate.
However, like A-GNSS, OTDOA suffers in urban and indoor environments where NLoS
and multipath channels dominate. Release-11 will complement OTDOA with Uplink Time-
Difference-of-Arrival (UTDOA). The main difference being that UTDOA is determined by
the eNBs after a signal is sent from the UE [45] whereas the opposite is true in OTDOA.

The third method enlisted by LPP for UE positioning is enhanced-cell ID (E-CID). This
method is identical to the database correlation method. When a UE initiates an LPP session,
and E-CID is the chosen method from which to derive a position, the network will negotiate
with the UE which radio signatures the UE will measure and send to the E-SMLC to be
compared against its database. This measurement set is reliant on the composition of the

5This section was revised from [28].
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a priori database and the UE capabilities. Measurements specified in the LPP standard
include cell-ID, reference signal received power (RSRP), reference-signal received quality
(RSRQ), and TA [39]. The best radio signature set useful for positioning is currently an
open topic (e.g., [38]); however, data fusion has been suggested by the body governing the
development of LTE, the Third Generation Partnership Project (3GPP), [46] via

Il Drsrp — Drsre;i |l N | Dra — Dra,i ll

2 0.2

p = arg min (2.11)

p

DrsRrp,i Drai

where Dgsgrp is the UE measured RSRP, DRsrp, is the i pre-recorded RSRP measurement,
Dra is the current UE TA, Dra;i is the i® pre-recorded TA measurement, and 0'% are
the respective database variances. Here the variances have been included as weights to

normalize the effect of datasets with different statistics.

Finally, it should be noted that LPP sessions are ciphered [47] and, as such, effectively
protected data. This study assumes these data to be unreadable and thus not available for

exploitation.®

6This section is revised from [24].
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CHAPTER 3:
Solution Approach

In this work, we propose a novel method to localize a connected cellular device based on
the LTE signaling plane TA parameter. While this work specifically focuses on applications
in LTE/LTE-A, the fundamental process is applicable to all cellular technologies which

manage mobile device timing alignment (e.g., WiMAX).

As was seen in the literature survey in Chapter 2, it is well-known that, in addition to
maintaining time alignment, the TA can be used to estimate UE distance from serving
eNBs [23], [40]. However, there is not a rigorous analysis of the best possible positioning
accuracy of this method. We will show through analysis how, with the advent of tighter
time alignment in LTE, the TA has turned a statistical corner making positioning a UE
with an unprecedented level of consistent accuracy possible. Additionally, we propose a
method of augmenting TA-based positioning to further improve accuracy. Referring now
to Figure 3.1, we outline the proposed scheme in three general steps. First, relevant data
are collected. Primarily, this includes TA data sent to the target UE from which a distance
estimate is inferred. Optionally, the TA data are then augmented with the CeSAR algorithm.
The position estimate is then made with the resulting data set.

3.1 Data Collection

Data collection begins with initialization with the relevant parameters that are assumed to be
known a priori. The parameters in question include the serving eNB location(s), the cellular
address of the UE to be located, the operating E-UTRA absolute radio frequency carrier
number (EARFCN), and each eNB’s TA bias’. The mobile UE is uniquely identified with
an international mobile subscriber identity (IMSI), which the network maps to a cellular
software address. This software address must be known in order to ascribe the correct
TA values to the UE since a multiplicity of UEs may receive TAs from a single eNB. The

geometry of the serving eNB(s) can be ascertained directly by site survey or by statistically

7It should be noted that in practical scenarios involving a sectored eNB, the UE sector must also be known
in order to ensure the third party can receive information transmitted from the tower to the UE. In this work,
we assume that eNBs are not sectored.
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Figure 3.1. The proposed scheme for TA-based positioning

inferring eNB locations from data collected in the field (i.e., war driving) [26]. We assume
the former in order to not confound the major sources of error. Finally, in practice, we find
that each eNB has its own specific TA bias which must be known a priori in order to achieve

an unbiased position estimate. This bias can be measured directly during site surveys.

Next, TA data issued from the network to the target UE are collected. If more than one
eNB is serving the UE (a type of physically disjoint carrier aggregation) this collection is
repeated for each of the N > 1 eNBs. As cellular technology evolves to embrace the idea
of heterogeneous networks (i.e., LTE-A release 11+), the scenario where N > 1 becomes

more realistic, drastically improving the quality of a position estimate.

Once a TA from each serving eNB is collected, the option to refine the estimate further is
or is not exercised. In order to simplify the analysis, we focus specifically on the case of
localization and not tracking. In other words, prior information is not used to improve the
current position estimate (e.g., Markov or Kalman filtering). Rather, one TA collection is
used to perform a static position estimate of the target UE. The number and geometry of
serving eNBs will later be shown to heavily influence the positioning accuracy. More eNBs
will generally produce a more accurate estimate. The effect of the eNB geometry on the
position estimate is more difficult to dilute into a rule of thumb. However, in general terms,

the more eNBs that are collinear or approximately collinear generally reduces precision.
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Positioning can be done from several frames of reference: the network, mobile, or third
party. If the positioning is network-centric then the eNBs will communicate TAs issued
back to a central server which will perform the position estimate of the target UE. If the
positioning is mobile-centric, then the UE collects all issued TAs and performs the position
estimate locally. In both of these cases it is trivial to acquire both the local eNB geometry,
UE address, and eNB bias since it is reasonably assumed that the network both knows
these parameters and will be cooperative. Alternatively, if the positioning is done by third
party, the TAs will be observed over the air® and the sensor can report its measurement in
any number of ways to the third party. Because scheme initialization is non-trivial from a
third-party viewpoint and thus the most arduous frame of reference to take, we hereafter

assume this perspective.

3.2 Cellular Synchronization Assisted Refinement

If the option to refine the estimate is exercised, then the CeSAR algorithm [24], presented in
Figure 3.2, is used. Notably, the algorithm requires input from an extra-network sensor. This
sensor can be implemented with a relatively cheap software defined radio (SDR) solution
and is detailed further in a later chapter. Ultimately, the algorithm adds an extra dimension
to the existing TA-only system of equations and therefore has less error than the distance
estimate provided by the TA(s) alone. This augmented system of equations is then later

used to estimate the target UE position.

CeSAR begins by orienting the sensor to the network by observing cellular network beacon
signals. These signals communicate network organizational information which includes
frame boundary locations in time. This synchronization enables the sensor to perform
further demodulation and observation of network traffic. After the sensor is oriented, it
observes a TA issued to the target UE from a serving eNB. From this information, the sensor

determines both when the UE is instructed to transmit its next uplink burst and the target

8The TA will later be shown to be sent unencrypted, making this type of observation possible.
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UE’s approximate distance from the eNB. Finally, the sensor estimates its distance to the

target UE d’ by calculating the time of flight of a UE uplink burst to the sensor.

This technique of augmentation has several advantages, foremost of which is that the
augmentation is performed entirely passively. Because the sensor is not required to transmit
during any portion of the augmentation it simultaneously makes the process impossible to
detect from electromagnetic emanation and does not offer any further traffic load to the
network. Furthermore, all information utilized in the refinement process is sent in plaintext,
thus it does not require the sensor to bypass encryption. Additionally, strategic positioning
of the sensor can overcome geometric dilution of precision (GDoP). Because control of
the network geometry is usually not possible, this point is significant and is demonstrated

further in the work.

For the aforementioned reasons, we submit that the proposed method of augmentation
is preferable from a network operator perspective and simultaneously attractive from a
vulnerability analyst’s perspective. Because the additional required infrastructure (i.e.,
sensor) is inexpensive and, in contrast to LPP, it does not offer further network load it
is an attractive solution to network providers seeking to maximize network performance
while minimizing operational costs. Alternatively, it is also a significant finding from a
vulnerability analyst’s perspective, because it is a passive technique that can be utilized

relatively covertly.

3.3 Position Estimation

Once the data are collected (regardless of whether they are augmented with CeSAR) the po-
sition estimate can be made as in Figure 3.3. A benefit of the proposed scheme is that there
is no requirement on the resulting system of equations (e.g., consistency, overdetermined,
underdetermined, etc.). Specifically, the estimate is calculated through a nonlinear pro-
gramming approach parameterized by the latent distributions of error which seeks the most
likely position of the UE. The type of position estimate is termed the maximum-likelihood
estimate (MLE).

When developing a MLE a critical first step is understanding the underlying error distribu-

tions associated with the measurements. This is perhaps the most crucial step, since the
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Figure 3.3. The method of position estimation

final position estimate is only the most likely position location if the error distribution is
well understood. We will later cast the TA error as a quantized RV and show that the error
can be modeled as normally distributed. Thus, the MLE of the true distance from a distance
estimate that is normally corrupted d; for a single measurement is the measurement result
itself. This straightforward result hinges on the assumption made about the underlying error
itself. However, the underlying phenomenon associated with a TA is complex, therefore, a

significant amount of work is dedicated to substantiating the claim for latent normality.

After cf,- Vi is established, if measurements are CeSAR-augmented, the vector of all cf,- is
concatenated with the CeSAR measurement d’. Explicitly, the resulting vector of measure-
ments used to perform the position estimate is either d= [dy,...,dy]T if augmentation is
omitted or d = [cf Ly .,ch, cf’]T if augmentation is implemented. Those N or N + 1 mea-
surements are then used to construct an error surface defined by the conditional probability

density function p((i |d).

Finally, finding the most likely position requires finding the argument p = [x, y]” which

maximizes the error surface p(ti |d) via the program

p= argmaxp(tild). (3.1
P

For some distributions, finding the exact MLE requires an exhaustive search over all p [10].
Because of the non-trivial computational burden levied by such a brute force approach,
significant effort has been made in the research to find approximate solutions to this max-
imization program (e.g., [31]). Because this problem is well-traveled in the literature, it is
not a focus of this work. Instead, we use computationally intensive means to arrive at p
in order to avoid idiosyncrasies associated with some of the more nuanced solutions in the

literature.
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3.4 Performance Metrics

The Cramér-Rao Lower Bound (CRLB) is a well-accepted lower bound on the performance
of an unbiased estimator [10], [48]. However, like the MLE, the CRLB is highly dependent
on understanding the distribution of the underlying error. Additionally, the CRLB can be
difficult to calculate in closed form for certain non-standard error distributions [21]. Despite
the fact that the error associated with a TA is a discrete RV?® and thus strictly non-injective in
terms of the observed rounded RV, we will show that the CRLB can be derived through an
understanding of the RV through the lens of quantization. The values realized by evaluation
through the CRLB are also somewhat abstract as they are given in mean-squared error
(MSE) or root mean-squared error (RMSE). In both cases, the errors are squared before the

mean is taken (in the case of RMSE the root of the mean is then taken) via

N
MSE = » |Ipo - dilI’
i=1

(3.2)
N
RMSE = | > [Ipo ~ il
i=1
for N trials and || - || is the Euclidean norm. Of these two abstract metrics, RMSE provides

values that are most easily understood. While the RMSE cannot be directly translated to

mean error, the values are the most intuitively satisfying.

While we rely primarily on the CRLB to show theoretical lower bounds on the performance,
accuracy is also demonstrated in specific cases with the circular error probable (CEP). CEP
is established in context of a certain percentage. For example, CEP 70% will result in a
distance within which the error associated with p will fall with probability 0.7. To further
illustrate the contribution of this metric we present a case study in Figure 3.4. In this
figure, a UE is located at pg = [0,0]” and successive position estimates are made which
are corrupted by independent and identically distributed normal measurement noise in both
the orthogonal Cartesian directions. In the left pane of the figure, a cumulative density
function (CDF) representing the error associated with the position estimate is shown. The

CDF describes the probability that a realization of a RV X will fall below a given value x

9The TA can be seen as a rounded distance measurement; see Chapter 4 for further treatment of the TA.
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Figure 3.4. The circular error probable at 50%, 70%, and 90% shown with
a CDF and in simulation

via [49] i
FMDEHM£ﬂ:/.ﬁwwy (3.3)

where Fx(-) is the CDF and fx(-) is the PDF defined by [49]

d
fx(x) = ——Fx (x). (3.4)
X

The values of x for Fx(x) = {0.5,0.7,0.9} are all shown on the x-axis in the left pane
of Figure 3.4 and can be interpreted as the distance from the true position that a certain
percentage of the estimates p; will fall. For instance, in the case of the study presented in

Figure 3.4, 70% of all position estimates will fall within 1.57 units of py.

While CEP gives a more intuitive metric, it is most useful in Monte-Carlo simulation with
more complex underlying errors and cannot usually be derived analytically. Additionally,
we sometimes present the empirical moments from a simulation along with CEP in order
to provide a more complete statistical picture. However, the empirical moments do not
necessarily align with the CEP metric. In other words, if X; and X, are both RVs it could
be that X; has a lower CEP 70%, but X, has a lower mean error.
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3.5 Summary

The proposed scheme has several distinct advantages and limitations. In contrast to TA-
based resolution in legacy networks, the scheme is accurate on the order of tens of meters.
However, the accuracy is proportional to the number of available eNBs N so, in the
common legacy case where N = 1, accuracy suffers somewhat. Nonetheless, as cellular
infrastructure evolves, it is expected that the case where N > 1 will become increasingly
common [3] lending itself to multiple eNB positioning. With augmentation, accuracy can
also be improved on the order of tens of meters and without the need for any emissions
from the augmentation sensor (i.e., passively). This makes CeSAR augmentation a sensible
choice for heavily congested networks and applications requiring discretion since it does not
add traffic to the existing network. An obvious limitation is that it requires extra hardware

to be introduced into the network.

In the subsequent chapters, we detail the efficacy of the proposed solution approach through

a thorough treatment of data collection, CeSAR augmentation, and position estimation.
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CHAPTER 4:
Morphology of the LTE Timing Advance

In this section, we present a review of the LTE standard with the specific focus of the
structure and relationship of the TA to the protocol at large. The operation of the TA in

current (legacy) network deployments and future (heterogeneous) deployments is discussed.

This chapter includes adaptations from work which has been previously published by the
author. Specifically, sections 4.1-4.6 are taken from “Cellular Synchronization Assisted
Refinement (CeSAR): A Method for Accurate Geolocation in LTE-A Networks” by John
Roth, Murali Tummala, and James Scrofani published in the proceedings of the 49" Hawaii
International Conference on System Sciences in January 2016 [24]. Section 4.7 is revised
from “Maximum Likelihood Geolocation in LTE Cellular Networks Using the Timing
Advance Parameter” by John Roth, Murali Tummala, John McEachen, James Scrofani, and
Robert DeGabriele to be published in the proceedings of the 10" International Conference
on Signal Processing and Communication Systems in December 2016 [21]. Section 4.8 is
revised from “Location Privacy in LTE: A Case Study on Exploiting the Cellular Signaling
Plane’s Timing Advance” by John Roth, Murali Tummala, John McEachen, and James
Scrofani to be published in the proceedings of the S0™ Hawaii International Conference on

System Sciences in January 2017 [28].

4.1 Time Alignment Management in LTE

The TA is a signaling plane parameter with the purpose of reconciling UE mobility with
quality of service. LTE uses an orthogonal frequency-division multiple access (OFDMA)
scheme which requires that transmissions are highly disciplined in time and frequency
in order to avoid intersymbol interference with other UEs sharing service with the same
eNB [22]. As UEs move throughout a serving cell their distance to the serving eNB
may change thus changing the propagation delay between the UE and the eNB. The eNB
constantly estimates the UE-eNB distance and issues TA updates in order to ensure the UE

is continuously synchronized in time relative to the propagation delay.
Ever since GSM, the TA quantity has been recognized as useful for positioning cellular
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Figure 4.1. The random access response (RAR) message found in the media
access control (MAC) header. Bit boundaries are denoted by the bar above
the figure. Adapted from [50].

devices [23], [40]. In this section we aim to develop context for the TA inside LTE networks.

The TA takes two forms during normal cellular operation. The first is the TA that is ne-
gotiated during the initial network random access. After the UE has obtained downlink
synchronization via the primary and secondary search signals (PSS/SSS) and the corre-
sponding system information from the master and system information blocks (MIB/SIB)
the UE requests network access from the eNB via a random access preamble. If the request
is successful the eNB continues network access negotiation with a random access response
(RAR) message. As seen in Figure 4.1, inside this message is the cell radio network tem-
porary identifier (C-RNTI)!°, an uplink resource grant, and an 11-bit TA quantity where
Ty € {0,1,---,1282} [50]. This quantity directs the UE to begin transmission of its uplink
frame 16 x T4 X Ty seconds before the beginning of the corresponding downlink frame,

where 7 is the sampling frequency [51], [52].

The second form the TA takes is during normal maintenance of the eNB-UE connection.
Unlike the TA during initial network access, this TA only adjusts the UE’s uplink timing
based on its current timing and is thus relative. As the mobile device moves throughout the

vicinity of the eNB its distance to the eNB will likely change. In order to maintain the uplink

10This is a temporary user address which will receive further discussion in Section 4.3.
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Figure 4.2. The legacy timing advance command (top) and the release 10+
timing advance command (bottom). Bit boundaries are denoted by the bar
above the figure. Source: [50].

timing alignment, the eNB will periodically issue TA commands to the UE. These six-bit
TA commands come in the form of a medium access control (MAC) control element (CE) as
seen in Figure 4.2 [50]. Because only six bits are used T4 € {0, 1,---,63}. Each command
moves the UE’s current uplink timing by 16 X (T4 — 31) X T seconds. The possibility of a
negative value allows for the uplink timing to be advanced or retarded depending on which
direction the UE is moving relative to the eNB [51], [52].

Additionally, as of Release 9, type 1 and type 2 TAs are introduced [53]. A type 2 TA is

determined by the eNB via the UE generated random access preamble and calculated as

TAy =TeNB.Rx — TeNBTx 4.1)

where 7,y gy is the time instance where the eNB receives the UE random access preamble
as determined by the first path and 7,y 7y is the standard eNB frame timing. A type 1 TA
is calculated during the maintenance phase via

TAy = (teNBRx — tenBTx) + (tUERx — LUETX) 4.2)

where the first difference is the time separation between a received uplink frame and its
transmit timing and the second difference is the time separation of those same frames only
this time at the UE. The second difference is always positive, while the first may be positive
or negative. The type 1 TA theoretically allows the eNB to determine the round trip time
with arbitrarily small error and use this to advance or retard the served UE’s uplink timing.
It should be noted that the type 1 TA is never sent over the radio link and is thus not available

for exploitation over the air by a third party; however, we later discuss how a passive listener
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7=78.125m

Figure 4.3. The uncertainty associated with TA distance measurements

can use this principle to refine an observed TA command via CeSAR.

Both the initial and maintenance TA are sent in plaintext. The first, which is found in
the RAR, is sent before a security key is negotiated and thus must necessarily not be
encrypted. The maintenance TA is sent as a MAC CE. Since the CEs are sent as part of
the MAC header, which is below the Packet Data Convergence Protocol (PDCP) sublayer,
it is also not encrypted. This enables a third party within range to observe this traffic in
plaintext. However, if the third party does not observe the initial TA it will be more difficult
to effectively use the maintenance TA for ranging as each one is relative to the previous
absolute TA maintained by the UE and the network.!!

4.2 Uncertainty in the Timing Advance

Largely because of the discrete nature of the TA, a single measurement from an eNB will
reduce the possible location of the UE to an annulus of fixed width, 7. This annulus, with
the eNB as its center, is shown in Figure 4.3. This discrete error is also exacerbated by
error associated with the eNB antenna height, multipath propagation, and clock bias [42].

By analyzing the quantization error we can determine the width of the area of uncertainty.

'This section was revised from [24].
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As stated previously, a TA will change a UE’s uplink timing in increments of 16 x 7. The

parameter 7 is the LTE basic unit of time and is given by

1

To=— 4.
15000 x 2048 Scconds @.3)

where 15000 corresponds to the subcarrier spacing of 15 kHz and 2048 corresponds to
the maximum Fast Fourier Transform (FFT) size [23], [51]. Assuming speed of light

propagation, the range of uncertainty 7 can then be calculated by

1 c
=1 —X — =78.12 4.4
T 6 X > X 15000 < 2043 78.125 meters “4.4)

where c is the speed of light and the extra factor of 1/2 is included because the eNB must

consider the downlink propagation time for the command to reach the UE when issuing a
TA.

This line of analysis can also be used to determine the maximum eNB-UE range supportable
by LTE. Since the maximum initial TA value is 1282, the formula in (4.4) can be used to

determine a maximum supportable distance of approximately 100 km.!?

4.3 Software Address Space in LTE

Because a multiplicity of users will be simultaneously connected to a given eNB and
because each user may be at different distances from the eNB, each UE must be able to
determine which TAs are issued to which UEs. To this end, each TA is associated with a
destination address in the form of a 16-bit C-RNTI. The C-RNTI is effectively a temporary
software address issued by the network to each UE analogous to an Internet Protocol
address. The C-RNTI is initially leased to a UE during network access negotiation via
the RAR message. Maintenance TAs are associated with a specific C-RNTI via downlink
scheduling assignments made on the Physical Downlink Control Channel (PDCCH) found
in the L1/L2 control region of each subframe [22]. Because the L1/L.2 control region of each
subframe needs to be decoded by every UE, it is sent in the clear. Therefore, a third party
could use the information in the PDCCH to find the resource on which a transport block for

a particular UE is located. The corresponding transport block could then be searched for

12This section was revised from [24].
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a TA CE. Of particular importance with respect to C-RNTI attribution is that UE network
access must be observed in order to initially associate a C-RNTI with a particular UE IMSI

as the IMSI is not frequently transmitted unencrypted.!3

4.4 Timing Adjustment Frequency

The frequency of the maintenance TA is of particular importance as we would like to know
how often this information is transmitted and thus how available it is. This frequency is
lower bounded by an LTE parameter timeAlignmentTimer [54]. This timer is reset each
time a TA is received from the eNB. If the timer expires, the radio connection is considered
out of synchronization and the UE must renegotiate with the network to restore its uplink
time synchronization. Because of this, the TA frequency must ensure a TA is issued within
the period of time specified by the timeAlignmentTimer. This parameter has configurable
finite durations {500, 750, 1280, 1920, 2560, 5120, 10240} which is common for all serving
cells per UE. The duration corresponds to the maximum number of subframes sent in
between TAs. Because subframes are continuous in LTE and because each subframe is
stipulated as 1 ms long by the standard, the available durations can also be interpreted as
number of milliseconds [51]. Therefore, when configured for finite'4 duration, we can
expect a TA to be sent no less frequently than anywhere from every one half second to
every ten seconds. In practice, the TA frequency will be more frequent, usually resulting
in TAs issued several times per second [22]. During field measurements, we observed TA
issuance frequencies at the sub-second level. This frequency of the TA will be sufficient for

the purpose of nearly-continuous positioning. !>

4.5 Heterogeneous Networks

Heterogeneous network deployments were introduced in LTE Release 10 which, among
other improvements, allowed for increasing the data capacity of a network through carrier
aggregation. Carrier aggregation is a method by which several carriers may be configured
to support a single UE. When carrier aggregation is used, a primary cell (PCell) and

one or more secondaries (SCell) may be configured to support a single UE. The Radio

13This section was revised from [24].
14The standard also allows for a configurable infinite duration of timeAlignmentTimer.
I5This section was revised from [24].
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Resource Control (RRC) sublayer is responsible for selecting an PCell and then configuring
appropriate SCells [54]. Release 11 further provides support for PCells and SCells that are
not co-located. In order to maintain uplink synchronization among all serving cells it was
necessary to establish the concept of the timing advance group (TAG). Serving cells that
are co-located are assigned to the same TAG, thus removing the need for separate TAs for
each individual cell. As seen in Figure 4.2, TAGs are associated with TA updates in the
two-bit TAG ID field. The size of the TAG ID field indicates the specification is designed
to eventually support up to three additional SCells or four total separate channels. 6

4.6 Timing Advance Positioning during Handovers and
with Coordinated Multipoint

In order to facilitate inter-cell mobility, UEs must monitor and evaluate the received signal
quality of neighboring cells. The type and frequency of measurements are configurable and
are dictated by the network. Measurements normally involve acquisition of the cell PSS
and SSS. After this is complete, the UE will have determined the cell-ID and the downlink
synchronization giving it access to the cell-specific reference signal. This signal is then
used to determine the reference signal received power (RSRP) and/or the reference signal
received quality (RSRQ). If the RSRP or RSRQ is larger than a configurable quantity then
that cell will be selected for handover. Handovers may occur for various other reasons such

as network load management [54].

In the case of a network initiated handover, the UE is notified by the serving eNB via a
message that is generated by the target eNB!7. This message may include mobility infor-
mation such as the target cell-ID, physical layer parameters, and the new C-RNTT to assist
the UE in establishing its new connection. Notably, the handover is asynchronous, meaning
the UE will begin the random access procedure with the target eNB which will involve
the negotiation of a new initial TA concurrently while still receiving a TA from the source
eNB [54].

The presence of two TAs from spatially disparate beacons presents a unique opportunity

for gleaning location information. By processing this information at the E-SMLC with

16This section was revised from [24].
7"More specifically, this message is passed as a RRCConnectionReconfiguration message [54].
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TDoA methods, a hyperbolic annular locus can be described around the source and target
eNBs. The advantage of this type of scenario lies in no requirement for the UE to be tightly
synchronized with the network effectively removing the error from clock bias. Alternatively,
the ToA method may be used which will result in two annuli from the two TAs. The two
annuli reduce the target locus to the their area of intersection. Finally, if ciphering is not
enabled, the target eNB will issue a new C-RNTI to the UE in the clear allowing a passive

listener to map the previous C-RNTI to the new.

Coordinated Multipoint (CoMP), potentially part of Release 11, is a related technique that
aims to improve quality of service at cell boundaries by coordinating the reception of a UE
signal at multiple eNBs [55]. Uplink timing alignment becomes difficult in such a scenario,
as the UE cannot transmit the same signal at different times to ensure each cell receives a
time-aligned signal. Solutions to this problem generally involve synchronizing the uplink
timing to the nearest serving cell [56] and then selecting other appropriate cells such that
the other received signal arrive within the duration of the cyclic prefix [57]. Thus, while it is
still an open area of research, the general consensus is for the UE to be uplink synchronized
to the closest serving cell [55], [57]. Since CoMP provides no additional location-based
information (i.e., the network still only issues one TA) it is not considered further in this
study.!8

4.7 The Empirical Timing Advance

To shed light on the behavior of the TA in the wild, we examine real-world data observed
in Maryland and California and shown in Figure 4.4 and Figure 4.5. First we examine the
data presented in Figure 4.4, which represents collections where the UE was traveling at
a constant rate in a suburban environment such that the distribution of eNB-UE distances
during measurement is approximately uniform. From this subset of data, we make two

observations.

First, in most cases the variance offered by the TA was relatively small compared to the
variances contributed by the measurement error. For example, the average variance among
all locations was 02 ~ 3500 m? while the theoretical variance offered by the LTE TA is

O'%A ~ 500 m2.

18This section was revised from [24].
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Figure 4.4. Timing advance errors recorded in real-world LTE network de-
ployments in Maryland (a) and California (b). Adapted from [21].

Second, it was previously hypothesized [28] that the underlying error distribution could
be modeled as normal. By initial inspection of these data with the normal distribution in

Figure 4.4, we find no reason to reject the hypothesis.

Next, we present the results of an experiment conducted at four different locations and
designed to elicit the difference in NLoS versus LoS channels. At each of four locations
{A,B,C,D}, the distance to a serving eNB was estimated using received TAs. The first- and
second-order statistics of the resulting error are presented in Figure 4.5. Each location was
characterized as either a dense urban (locations A-C) or suburban environment (location
D). Dense urban locations were located in the city center of Baltimore, Maryland, which is
largely comprised of tightly-packed skyscrapers. The suburban location was in the outlying
area surrounding Baltimore. At each location the distance was fixed (i.e., the UE was
stationary) and the TA was recorded for a period of one minute when the serving eNB
could be directly seen (LoS). The procedure was then repeated at a nearby location where
there was a major obstruction in the line-of-sight to the same serving eNB. Histograms
representing the raw error measurements are presented in Appendix A. These histograms
can be interpreted as probability mass functions since, with distance constant, the error will
be in increments of 78.125 m (c.f. (4.4)).

Referring to Figure 4.5, we observe little difference in standard deviation between LoS
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Figure 4.5. Data are presented which has been recorded at a fixed distance
from eNBs in dense urban and rural environments. Data were recorded
when there was a LoS to the eNB and when there was not in the same
general location at four different locations {A,B,C,D}. Locations A-C are
dense urban environments and location D is a suburban environment. Mean
error and standard deviation of error are presented.

or NLoS conditions or dense urban or suburban environments. The measurement error
variance can then be considered independent of channel environment which is consistent

with the channel model presented in Chapter 2 and with previously reported results [10].

Second, the mean error is highly dependent on channel conditions (i.e., LoS versus NLoS or
suburban versus dense urban). As expected, dense urban and NLoS environments resulted
in a higher mean error. In all cases the mean error of NLoS measurements was significantly
different from the mean error of the LoS measurements at the 5% significance level'°. Our
experiments yielded a unios — tros € [20 m, 80 m]. The difference in urban versus suburban

channels was also noticeable. Our experiments showed tyrban — Msuburban € [60 m, 220 m].

Finally, we note that a eNB-specific TA bias is present in each one of the data sets collected.
In other words, the mean of all measurements (for constant channel type) will differ.
Referring to the measurements presented in Figure 4.5 we see that for LoS environments

the mean value has range € [-20 m, 114 m]. Similarly, for NLoS environments the mean

19Statistical difference was established using Student’s t-test which requires the underlying data to be
normally distributed. Despite the data being discrete, this assumption is further validated through analysis in
Chapter 6.
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value has range € [31 m, 197 m]. While it was for these observations that uyy.s — fros > 0,
the underlying bias is more difficult to predict. This is a value that must be measured and
understood a priori in order to use the TA to provide an unbiased position estimate. As

mentioned in Chapter 3, this quantity is assumed as a given input to the overall scheme.??

4.8 The Timing Advance as a Location Privacy Preserving
Mechanism

A location privacy preserving mechanism (LPPM) is a paradigm for protecting user location
privacy and has two components: obfuscation and anonymization [58]. More specifically,
a LPPM is a formal mechanism for modeling the amount of privacy a scheme affords. We
thus find it a useful construct in evaluation of the TA since a third party may not have

network assistance in obtaining the desired parameters for positioning.

The act of obfuscating a location will add noise to the actual location d = fi(p) thus a
third party using obfuscated only data (i, d) will have access to user identities, but the
associated location data will be imperfect. The act of anonymizing data will replace the
user identity with a pseudonym & = f(u;) thus a third party using anonymized only data
will have access to exact locations but not identities. A obfuscated and anonymized data

set (i, d) will provide a third party access to neither piece of information directly.

Formally, the TA can be modeled as a LPPM. The noise added to the data can be modeled
with the function
d; = mod(|l pi — po Il. 7) (4.5)

assuming an ideal TA model. In other words, the TA obfuscates the actual UE position
through a process of spatial quantization. Next, the network anonymizes the UE through
assignment of a C-RNTI [22]. As previously discussed, the C-RNTI can be thought of as a
software address and is assigned dynamically. Therefore, the C-RNTI mapping fc_rn71(*)
can be thought of as LPPM anonymization.

This LPPM is weak for several reasons. As will later be demonstrated, the quality of the
location obfuscation declines rapidly when multiple eNBs are configured. The quality of

anonymity provided by fc_rn7i(-) is also in question [59], [60]. We therefore assume

20This section was revised from [21].
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C-RNTI attribution in this work and focus specifically on de-obfuscation of the UE location

po.>!

21This section was revised from [28].
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CHAPTER 5:

Cellular Synchronization Assisted Refinement

This chapter specifies the details of the Cellular Synchronization Assisted Refinement
(CeSAR) algorithm for improving TA-based positioning. Besides details of the algorithm,
implementation of the required sensor is also included. CeSAR was first introduced in [24]
and is also studied in [21], [28], [29], [61].

This chapter includes adaptations from work submitted for publication or previously pub-
lished by the author. Specifically, section 5.1 is revised from “On Location Privacy in
LTE” by John Roth, Murali Tummala, John McEachen, and James Scrofani which has been
submitted for publication [29]. Section 5.3 is revised from “Location Privacy in LTE: A
Case Study on Exploiting the Cellular Signaling Plane’s Timing Advance” by John Roth,
Murali Tummala, John McEachen, and James Scrofani to be published in the proceedings

of the 50" Hawaii International Conference on System Sciences in January 2017 [28].

5.1 The Cellular Synchronization Assisted Refinement Al-

gorithm
CeSAR, depicted in Figure 5.1, involves a third party using its knowledge of a UE’s transmit

timing to refine an area within the initial TA annulus where that UE may be located.

Sensor

Figure 5.1. A single eNB implementation of the CeSAR algorithm
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Algorithm 1 The Cellular Synchronization Assisted Refinement Algorithm. Source: [29].

1: procedure CESAR(p.n B, Psensor-target C-RNTI)
2: function PSS/SSS Sync()

3 sensor<—eNB downlink frame timing
4: end function

5: repeat

6 x «—observed C-RNTI

7 until

8 x == target C-RNTI

9:  d; « TAX78.125m

10: t «— est_Tx_Time(TA)

11: " « observed uplink burst time

12: At —t' —t

132 d=At-c

14: dA<— [d\l,...,d\]v, cf’]T

15: p= argminp(a'l\ld)

16: end procedure

Generally, the procedure takes advantage of the fact that the TA contains two pieces of
information: the distance of the UE to the serving eNB and the UE’s uplink transmit time.
By exploiting both of these pieces of information, instead of just the eNB-UE distance,
a refined position estimate can be made. If a local sensor knows the UE’s transmit time
t and can record the time ¢ when the sensor observes the transmission then the distance
from the sensor to the UE can be determined by way of UE-sensor propagation delay. In
this way, CeSAR applies the principle behind the type 1 TA at the sensor location. As
previously stated, this effectively adds another dimension to the system of equations. A
necessary requirement to reap this benefit is a sensor in the serving cell/sector of the target
UE. In addition to the overall system initialization requirements (cf. Chapter 3), the CeSAR

procedure further requires that the position of the sensor be known a priori.
Besides improving position accuracy, CeSAR has several strengths [29]:

1. It can be performed completely passively. Therefore, during third party use the sensor
cannot be detected from electromagnetic emanations [24].

2. Strategic positioning of the sensor can overcome GDoP [10] caused by eNBs arranged
disadvantageously. This is a strength that will be shown in Chapter 8 to improve

accuracy significantly [29].
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3. The sensor need not be complex. The advent of SDR has put this method within
reach of reasonably skilled actors. Furthermore, SDR technology has significantly
lowered the monetary cost of entry to this type of exploitation.

4. All of the timing information is sent below the PDCP sublayer, and thus, in the

clear [28]. Therefore, there is no need to bypass encryption.

Referring now to Algorithm 1 and Figure 5.1, we give a detailed account of the procedure.
First, the sensor listens for the PSS/SSS from a serving eNB (steps 2-4). This is necessary
for synchronizing itself to the base station thus giving it the ability to decode cell data. Next,
the sensor decodes packets that it receives until it finds the target C-RNTI (steps 5-8). Once
a downlink frame being sent to the target UE has been identified (step 8), the associated TA
is observed in the MAC CE and converted to the UE-eNB distance d; (step 9). If there are
N serving eNBs, this process can be repeated N — 1 times. Simultaneously, the TA is used
to estimate the target UE’s uplink transmission time ¢ (step 10). With this information, the
sensor can measure the propagation delay Af from the UE to the sensor and convert that to
a UE-sensor distance measurement d’ (steps 11-13). This additional distance measurement
is added to the distance measurements [cil, ..d ~] obtained from the N serving eNBs to

A

form the system of equations represented by d.

Note that steps 10-13 are designed to extract uplink burst timing information from just one
of the N serving eNBs. While it is possible to extend CeSAR to repeat these steps across all
N eNBs, this will not result in any further information. To see this consider that the extra
information gleaned describes a circular locus around the sensor, therefore, additional uplink
burst timing information will only re-describe the same circular locus. Thus, attempting to
add dimensionality to d in this manner will result in dependent equations whose loci will

have an infinitude of intersections.

In addition to being nonlinear, the resulting system of equations is inconsistent with high
probability due to measurement error induced by the channel (cf. Chapter 2) and spatial
quantization associated with the TA, thus, solving this system is non-trivial and the impetus
for much of the analysis in Chapter 6. Presently, it is sufficient to treat the nature of the

measurement error as following some unspecified probability density p(d|d).

In order to estimate the target UE position, p, we frame the problem in the maximum-

likelihood sense. In other words, for a set of observed distance measurements, d , the most
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Figure 5.2. The hardware sensor configuration used in this work

likely position estimate is one that satisfies

p= argminp(efld). (5.1
P

If all measurements follow the same error distribution then we can parameterize the program
represented in (5.1) with the distribution p(-). The claim that p is the most likely location of
the target UE is heavily dependent on the knowledge of the associated error distributions,

thus, characterizing this distribution will be the subject of analysis in Chapter 6.22

5.2 Sensor Implementation

As previously discussed, the sensor need not be sophisticated. In fact, modern SDR solutions
provide a vehicle by which the sensor can be implemented. At the time of this writing, the
necessary RF components for such a SDR solution could be assembled off the shelf for less

than $3000. The particular solution implemented by this work is shown in Figure 5.2.

The RF front end is a universal software radio peripheral (USRP) N210 manufactured by
Ettus Research. The processing speed is high enough in this peripheral such that the maxi-
mum sample rate is limited by the Gigabit Ethernet connection to the host machine which
is nominally 20-25 MSps. The RF daughterboard utilized is the WBX board also man-
ufactured by Ettus Research. This daughterboard is capable of modulating/demodulating
baseband signals frequencies in the range of 50-2200 MHz which sufficiently covers the

cellular spectrum.

22This section was revised from [29].
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Figure 5.3. An overview of the salient logical signaling channel organization
in GSM

5.3 Observability of Uplink Frames

Here we highlight step 11 of the CeSAR algorithm which requires that a sensor is able
to observe an uplink burst from a specific UE. Because LTE uses an OFDMA access
scheme [22], the sensor would need to know what resource element(s) were assigned by the
network to that UE. Learning this information without direct access to an eNB is non-trivial,
however, possible. This possibility, which is the focus of this section, marks a significant
shift in the confidentiality architecture of LTE. In this section, we contrast the signaling
plane confidentiality of LTE with that of GSM to first highlight this shift. Additionally,
the contrast demonstrates that, while it is not possible to decode the UE uplink burst, it is

possible to know in what time-frequency resource it will be sent.

We begin by first presenting the salient aspects of the GSM signaling plane. GSM defines
a series of logical channels used in both the downlink and uplink. They are broken into
two categories of traffic and signaling planes, the latter of which is shown in Figure 5.3.
In the signaling plane are three groups of channels: the broadcast (BCH), common control
(CCCH), and dedicated control channel groupings (DCCH).

Of specific interest are the CCCH and DCCH groupings. Among other things, the CCCH
is responsible for the random access procedure via the random access channel (RACH) and
the access grant channel (AGCH) [62], [63]. Of note, no channels in the CCCH group are

encrypted as they contain information relevant to multiple users [64].

Consider a UE with information to transmit to the network and without a current valid

scheduling grant. The UE first needs to request assignment of a Standalone Dedicated
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Figure 5.4. The radio resource allocation procedure for a GSM connected
UE with network traffic

Control Channel (SDCCH) via the RACH [63]. The base station controller (BSC) will
respond with an IMMEDIATE ASSIGNMENT message via the AGCH assigning a specific
SDCCH to the requesting UE. Once the SDCCH is assigned encryption will begin. Finally,
an encrypted ASSIGNMENT COMMAND gives the parameters of the traffic channel (TCH) to
the UE [62]. Because this last step is performed after encryption begins, the confidentiality
of the uplink channel signaling is effectively preserved in GSM. This process?3 is presented
graphically in Figure 5.4.

Of particular interest is that encryption in the GSM air interface is performed at a very low
level immediately preceding modulation (in logical channels that support encryption) [62].

This strengthens the confidentiality of signaling traffic.

Similar to GSM, LTE also specifies a series of logical channels albeit organized differently
than in GSM. LTE has a more flat channel architecture so a hierarchy is not presented. Rather
only specific channels are selected for discussion. They are broken into the downlink and
uplink subgroups of which the former is of particular interest. In this group there exists a
DCCH similar to that of GSM, however, different from GSM the LTE DCCH is a bearer
of mainly the Radio Resource Control (RRC) layer information. Also different from GSM,
LTE specifies certain physical channels onto which no logical channel will map. Of interest
to this work is the Physical Downlink Control Channel (PDCCH) and the Physical Uplink

230nly an overview of the major steps in the process are presented for clarity. Furthermore, the base
transceiver station (BTS) and base station controller (BSC) are grouped into one entity, the base station
subsystem (BSS).
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Figure 5.5. The radio resource allocation procedure for an LTE connected
UE with network traffic is presented. Only an overview of the major steps
in the process is presented for clarity.

Control Channel (PUCCH).

In LTE, scheduling is the responsibility of the MAC layer and is done dynamically on a
frame-by-frame (i.e., 1 ms) basis [22]?4. Therefore, unlike GSM, LTE does not assign
dedicated control channels (i.e., the GSM SDCCH). Instead, the information pertaining to
uplink scheduling is found in the PDCCH broadcast in the L.1/L2 control region of each
downlink frame [22].

Consider a UE with information to transmit to the network and without a current valid
scheduling grant. The UE will first utilize the uplink L1/L2 control region to indicate to
the eNB that it requires uplink resources. As previously discussed, the eNB’s scheduling
decisions are issued via the PDCCH in the L1/L2 control region. Each scheduling grant
is appended with a cyclic redundancy check (CRC) which is calculated with the intended
recipient’s radio network temporary identifier (RNTI). Therefore all grants sent via the
PDCCH are checked by each UE with their allocated RNTIs. Grants that do not check are
discarded as either not intended for the UE or invalid [22]. The PDCCH is continuously
monitored by each connected UE to update its uplink grant allocation as it is changed

dynamically. This process is presented graphically in Figure 5.5.

Next, a large functional change in LTE, relative to GSM, is highlighted: the responsibility
for encryption is held exclusively in the PDCP sublayer. Therefore, nothing in the lower
layers (i.e., the Radio Link Control (RLC) and MAC layers) is ciphered [47]. A consequence

of this architectural shift is that a significant amount of signaling is sent in the clear. The

241t should be noted that the network can also optionally choose to implement semi-persistent, vice dynamic,
scheduling.
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requirement for transparent signaling is also built into the uplink scheduling scheme (cf.
Figure 5.5) which would not work if ciphering was implemented at the same low level it is
in GSM. Therefore, with this signaling plane confidentiality, the target RNTI is only needed
to decode that UE’s unencrypted uplink resource grants.?3

25This section was revised from [28].
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CHAPTER 6:
Theory of Random Variable Quantization

In this chapter, following [65], we provide an account of the theory of quantization of
a RV in general terms. To provide an impetus for the subsequent discussion, we first
introduce fundamental and relevant concepts such as the CRLB and GDoP. We then derive
the conditions necessary to satisfy a lower bound on positioning. This chapter provides
the theoretical foundation and justification for a method of maximum-likelihood estimation
developed in the subsequent chapter and follows directly from work previously published
by the authors [21], [29]. Specifically, Sections 6.1 and 6.2 are revised from “Maximum
Likelihood Geolocation in LTE Cellular Networks Using the Timing Advance Parameter”
by John Roth, Murali Tummala, John McEachen, James Scrofani, and Robert DeGabriele to
be published in the proceedings of the 10™ International Conference on Signal Processing
and Communication Systems in December 2016 [21]. Sections 6.4- 6.9 are revised from
“On Location Privacy in LTE” by John Roth, Murali Tummala, John McEachen, and James

Scrofani which is submitted for publication [29].

6.1 The Cramér-Rao Lower Bound in Time of Arrival Po-
sitioning

The CRLB is a well-known lower bound on the mean square error (MSE) or root mean

square error (RMSE) of an unbiased estimator [7], [10], [48]. In this work, we use the

RMSE in order to provide results that are easier to understand in terms of positioning

accuracy. Given the unbiased estimate p, the CRLB is formally expressed as

JE{(po - P)?} > CRLB. (6.1)

In matrix form, CRLB = Tr(VI-!) where Tr(-) is the trace function and I is the Fisher
information matrix (FIM) developed for the ToA application as [10]

92 logp(d|d
Iijy=-E 9" logp(did) (6.2)
P} 0P}
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Figure 6.1. The layout of an actual cellular network deployment located in
Annapolis, Maryland. Source: [21].

where the subscript(s) in brackets represent the matrix or vector index. The proof of
this relationship for a general unbiased estimator is provided in Appendix B. When the

probability distribution function (PDF) is normal and o; = o, Vi, it can be shown that [31]

N (x—x;)? ZN (x=x)(y—yi)

1 i=1 "~ g2 i=1 a2
I—; N =x)(y=yi) N (-y)’ 6.3)
i=1 d% i=1 d?

A proof of the relationship presented in (6.3) is given in Appendix C. In general, the
expectation in (6.2), taken with respect to p, may not have a closed-form solution. In this

case, it is necessary to resort to numerical integration techniques.

When NLoS conditions are present, it has been shown that the CRLB can be attained when
the eNB(s) with NLoS channel conditions are discarded and only those remaining with LoS
conditions are used for positioning [66]. This requires the ability to identify and discard

those measurements [31].

In order to show typical values of the CRLB, an actual network deployment in Annapolis,

Maryland, shown in Figure 6.1, was evaluated?¢. The fourth and fifth nodes are added

26] atitude and longitude have been converted to the Cartesian coordinate system where the axes units are
given in meters.
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Figure 6.2. The curves in the left pane show the CRLB as parameterized
by the noise level o and the number of eNBs N. The GDoP is also shown
in the right pane to demonstrate the favorability of the eNB geometry as
nodes 4 and 5 are added. Source: [21].

successively to show how positioning changes as more nodes become available. The

theoretical lower bound on the accuracy of an unbiased estimator for this geometry is then

shown in Figure 6.2 along with the corresponding trends in GDoP. In the left pane, the

abscissa represents the error in distance estimation given o; = o, Vi. The values are chosen

as they are common error variances in ToA positioning [31]. The ordinate represents the

minimum localization RMSE possible in meters. In the left pane, the abscissa represents

the number of eNBs N and the ordinate shows the GDoP value for the given N.

The CRLB can then be said to be a function of several parameters:

1. The shape of the probability density. The more peaked the shape (i.e., kurtosis), the

lower the CRLB (cf. (6.2)).

2. The variance of the error associated with the parameter to be estimated. The lower
the variance, the lower the CRLB (cf. Figure 6.2 and (6.3)).

3. The number of available eNBs. In general, the more eNBs available, the lower the

CRLB (cf. Figure 6.2 and (6.3)).

4. The geometry of the eNBs. It can be seen in (6.3) that, for the case of a normal

density, the geometry is completely defined by the angle from the UE to the eNB(s)

49



and the distance is mathematically irrelevant?”.

The sole dependence of the CRLB on the associated angles in the geometry and not the
distance can be seen from the following identities

cos(g;) = &)

di 6.4
sin(6’,~) — (U(‘Z‘yi) ( )

where 6 is the angle subtending the i"™ eNB and the UE. Substituting these identities into
(6.3) we have

1 Zfi] cos?(6;) Zfil cos(6;)sin(6;)

I=—
o2 | 2N cos(0)sin(6;) XN, sin®(6;)

(6.5)

From (6.5) it is easy to see how the CRLB is not dependent on distance.??

6.2 Geometric Dilution of Precision in Time of Arrival
Positioning

It was stated in the previous section and expressed in (6.3) that the CRLB is a function

of the eNB geometry. The effect of the geometry can be isolated from the effect of the

measurement noise by dividing out the measurement error to yield the GDoP given as [10]
A TIr(I-!
Gpop = YT, (6.6)
o

GDoP can generally be interpreted as the factor by which the standard deviation of the

position estimate is related to the standard deviation of the distance measurement

VE{(po - $)?} = GDoP x \[E{(d - d)2}. 6.7)

As a rule of thumb, it has been previously reported that GDoP values of less than three are

favorable where values greater than six are not [10]. Additionally, values of less than one are

27]t has been previously reported that the standard deviation of the distance measurement is distance
dependent [67]. Therefore, although d; does not affect the CRLB directly the variance may actually be a
function of the distance (i.e., o;(d;)).

28This section is revised from [21].

50



1040 m
Figure 6.3. The experimental setup of the GDoP investigation

possible and imply that the position estimate will have a smaller standard deviation than the

individual distance estimates, thus a geometric concentration of precision is experienced.

In order to investigate the geometric effect of eNBs on positioning we again turn to Figure 6.2.
Here the right pane shows how the geometric state improves as each eNB is added with
and without CeSAR. Without CeSAR, after the fifth eNB is made available the GDoP is
actually less than one where the aforementioned implication about geometric concentration

of precision applies.

In traditional cellular networks one is limited to the GDoP offered by the existing geometry.
However, one advantage of CeSAR is that the location of the CeSAR sensor can be chosen
to minimize GDoP. The geometric advantage of CeSAR is again shown in the right pane of
Figure 6.2. With CeSAR, the GDoP starts at one when N = 3 and continues to improve as

N increases.

To generalize the idea of GDoP beyond this specific use case we propose a notional model of
three eNBs arranged as an isosceles triangle as in Figure 6.3. The eNBs are all approximately
one kilometer apart. An area of one square kilometer, centered on the center of mass of
the triangle, is chosen as an area reasonably served by all three eNBs. The geometry of the
eNBs is systematically changed by lowering the base angle of the isosceles triangle (keeping

the base distance constant). The GDoP is then sampled uniformly throughout the serving
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Figure 6.4. The maximum, minimum, and mean GDoP in a serving area of
a collection of three serving eNBs is presented here. The eNBs are arranged
in an isosceles triangle with the base edge approximately one kilometer long
and with the base angle specified by the abscissa. Source: [21].

area and the results recorded in Figure 6.4. The regions of GDoP noted by [10] as having
suboptimal geometries for positioning, according to the aforementioned rule of thumb, are
shown in the figure. The maximum GDoP within the region quickly exceeds acceptable
limits while the mean and minimum remain within acceptable limits throughout. This trend
across statistics suggests that the more collinear eNBs are in the geometry, the worse the
environment for positioning. We note that this study is conservative as the maximum values
of GDoP remain on-axis with the triangle base and outside of the convex hull of the triangle

which is not well represented by the serving area.

These results suggest that, on average, the geometry of eNBs should not be unfavorable.
While GDoP will always affect the accuracy of the position estimate, even with very severe
collinear eNB geometry (such as that seen frequently in main thoroughfares like major
highways), harsh GDoP effects may not be common. An interesting corollary is that
because GDoP is only a function of the angles between the UE and eNBs (cf. (6.5)) the
density of eNBs will not have an effect on the positioning accuracy. Therefore we should not
expect that the recent move towards cell densification [68], as a means to increasing data

throughput, will improve positioning performance purely vis-a-vis denser infrastructure
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Figure 6.5. Geometric pathology in a two eNB positioning scenario

geometry.?®

6.3 Pathological Geometries

The CRLB is only a meaningful lower bound if the estimate is unbiased [48]. However, the
infrastructure may be physically organized such that an unbiased estimate is not possible.
We call this situation a pathological geometry. To understand this phenomenon, consider
the positioning scenarios shown in Figure 6.5. In both figure panes a Monte Carlo study is
conducted where there are two serving eNBs (N = 2) from which a target will be located.
The distance estimate made from each eNB is corrupted by a normal error source. The
axes are given in distance normalized by the standard deviation where oy = 0. Since, in
a two eNB scenario, it is equally as likely that the UE is on either side of the abscissa we
restrict the solution space to points which lie above the x-axis. In the left pane, the UE to be
located is almost directly in between the two eNBs. In the right pane, the UE to be located
is offset by So. By inspection of the resulting probability clouds, it is not hard to see that

the geometry in the left pane is biased while the geometry in the right pane is not.

This pathology arises from the fact that the CRLB does not take symmetry into account
which naturally arises in a two eNB scenario (i.e., it is equally likely that the position

estimate is above or below the x-axis for a given set of distance estimates). The symmetry

29This section is revised from [21].
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is described in this scenario by the line y = 0, which we term the symmetry directrix.
Symmetry of this sort can be dealt with by artificially restricting the solution space, as we
have done in Figure 6.5. Not doing this dramatically increases the resulting error since if
the position estimate on the wrong side of the directrix is chosen the error will be much
larger. Therefore, regardless of whether the solution space is artificially restricted or not,
the estimate will be biased. To see this, consider the pathological geometry in the left pane
of Figure 6.5 and note that a significant number of position estimates lie approximately on
the x-axis. This arises from the scenario where the sum of the distance estimates from the
eNBs is less than the distance between the eNBs. Put another way, if the distance estimates
were represented as circles centered on their respective eNBs, they would not intersect. It
is clear that in this scenario the most likely position estimate will lie somewhere on the line
connecting the two eNBs. In fact, for this scenario, this will happen approximately one-half
of the time and is a significant source of bias. In contrast, when the target moves far enough
away from the eNBs this bias disappears since the distance estimate circles will intersect
the vast majority of the time. In this case the probability cloud that is generated looks as
we would expect one to look that was generated from normal error. Alternatively, if a third
eNB is included, the bias will also disappear since the third eNB will help adjudicate the
position estimate in the direction orthogonal to the symmetry directrix.

Bias will be introduced anytime a position estimate is found without sufficient information
in each of the orthogonal bases for the coordinate system in use (seen in the left pane of
Figure 6.5). For measurements with normally distributed error and two eNBs, this means
the UE should be at least 30 away from the directrix. The rule of thumb to avoid bias is

less straightforward when N > 2 where numerical means can be used to estimate bias.

6.4 The Probability Density of a Quantized Random Vari-
able

Quantization is sometimes regarded as a non-linear operation making analysis of the asso-
ciated operations difficult. Here we review the work presented in [65] and highlight that
quantization can be shown to be a linear injective operation in the RV signal space. This

realization will justify use of the latent continuous distribution in a MLE.
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First, consider a latent RV N which, has the specific probability density

1 =2
PN (x) = N.r exr? (6.8)
o
and cumulative distribution function
X
Fy(x) = ® (;) 6.9)

such that NV has zero mean and some variance o. For convenience, and due to the assumption
that o; = o Vi, we hereafter use only ®(x) to represent the cumulative density of N'. We

define the specific distribution of N to simplify the discussion of quantization on variance
(cf., Figure 6.6) although the analysis presented is applicable to other distributions. We will

later show this choice of a normal distribution is appropriate for TA-based positioning.

Next, consider a quantization function @ such that Q : N' — N’ and the density of N’ is
(6.10)

given as
par(x) = ) @pd(x = 7).

Here we make use of the shorthand }}, to represent the sum over all n € Z, 6(+) to represent
The

the Dirac delta function, and «a to represent some appropriate scaling parameter.
relation in (6.10) can be regarded as a quantized version of N with bins evenly spaced by 7
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It is well-known that the quantization operation contributes to the overall noise of the
resulting signal. This is represented by the convolution px/(x) with a uniform distribution
pu(x) with support € [-7/2,7/2]. As a first step in defining Q, consider the result of this

convolution which is presented in detail in Appendix D

1
PN (x) x pu(x) = —[@(x +7/2) =@ (x = 7/2)] (6.11)

where ®©(x — ) is the cumulative density of px (x) shifted by some amount . The second
and final step taken in defining Q is a multiplication of (6.11) with an impulsion train (Dirac
comb) scaled by 7, ITI;(x), with periodicity 7. This process is presented graphically in
Figure 6.6.

To verify that (6.10) follows, observe that

(Z 76(x — nt) )% [O(x +7/2) — O(x — 7/2)] =

n

(6.12)
Z 5(x — n7) [®(nT + 7/2) — O(nt — 7/2)].

Next, let
a, = [®Pnt+71/2) —O(nt — 7/2)]. (6.13)

Finally, by substituting (6.13) into (6.12) we arrive at (6.10).

To see the equivalency of Q to quantization consider (6.11) as the difference of two scaled
cumulative densities (c.f., Figure 6.6). The product of that density with a Dirac delta results
in

76(x — x1) (pn () * py(x)) =6(x — x)[DP(x1 + 7/2) = O(x1 — 7/2)]

X1+T/2

=0(x — x1) PN (x)dx (6.14)
x1—-1/2

:axl/Td(x - Xl)

where the Dirac delta represents a bin centered on x;. The result of the product, given
in (6.14), is exactly the quantization operation, shown in Figure 6.7, a direct result of the

definition of a cumulative distribution function.
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X1

Figure 6.7. The quantization of a normal RV with bin size 7 and bin centers
X1 + nt is presented here. Adapted from [65].

Note that all steps taken in @ are linear and thus also commute. Therefore, while the
operation is indeed non-linear in the observation space (i.e., the result of a quantized
observation cannot be undone), the operation is linear in signal space. This will be the

subject of further discussion in a subsequent section.3?

6.5 The Characteristic Function of Quantized Random
Variable

Consider pp(x) i) Py (¢) which are related via the Fourier transform and define Py (¢)
as the characteristic function (CF) of px(x). The Fourier equivalent steps that define the
mapping of the CFs under Q is shown graphically in Figure 6.8 and given precisely by

loq/-(¢) * Pn(¢) - Py(¢) which yields

Prno(9) = ) An(¢ = 27n/7). (6.15)

Here A(¢) is the result of the product of CFs Py (¢) and Py (¢) explicitly given by

2 T

Pr(d) - Py(d) = e 5 sinc (‘%) (6.16)

30This section is revised from [29].
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Figure 6.8. The mapping of Q : N —> N’

where the product itself is trivial and the derivation of the exact CFs for Py (¢) and Py (¢),
given N is normal, can be found in Appendix E. Finally, we arrive at Py (¢) by performing

the convolution

Iz ) (¢) * Pr (@) - Py(¢) = Z e—(<¢—2"—2n/r>a>2 sinc (W) ) (6.17)
By comparing (6.17) to (6.15) we can see that
A(¢) = e smc( - ) (6.18)

and the separation of A, (¢) is inversely proportional to 7. To graphically show the effect of
Q in the Fourier domain, the A,(¢) are shown in Figure 6.8 with dashed lines while their
sum is shown with a boldface line. Also, the quantization operation in the Fourier domain
is completely defined by linear operations, thus fully injective in the RV parameter space.
Stated another way, given a quantized probability density function one is able to recover the
latent probability density function3! by reversing the above steps. The fact that quantization
is injective in the RV parameter space in both domains is an important point that will be

used to justify later statistical claims.3?

31'We note that certain conditions must be met in order for this to be true and are discussed later in this
chapter.
32This section is revised from [29].
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6.6 The Effect of Quantization Bin Size

Next we vary 7 to examine the effect of the bin size on pa-(x) and Px(¢p). We will later

expand on these observations to explain the effect of 7 on the variance of N’.

6.6.1 The Effect of Quantization Bin Size as 7 — 0
To understand the effect of a decreasing 7 on (6.10) and (6.15) let 7 — 0 and let

Fn/(x) = Pr[N’ < x] (6.19)

so that Fa(x) is the cumulative distribution function of N’. Using (6.10) and (6.13) we

can define the cumulative distribution function explicitly as

[x]e

Fo(x)= ) an

n=—oo

Ly (6.20)
D (T + 7/2) - d(nt - 7/2)]

n=—oo

=0 (Lx]r)
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where |-|; is the floor operator taken with respect to 7. Next observe that
lim @ (Lx}r) = O(x) (6.21)
therefore the cumulative density of N” — N as 7 — 0 since
li_)r% [x]r = x. (6.22)

This convergence in 7 — 0 of Fy+(x) — Fan(x) is shown graphically in Figure 6.9. It
follows then that

lim pp(x) = p (). (6.23)

From this relationship it is a trivial step to see that

lim Py+(9) = Pn () (6.24)

¢
since py (x) «— Py (). To verify, consider Py (¢) and note that as 7 — 0 the separation

between A, (¢) increases to co. Therefore, we can say that

lim Py (¢) = Ao(9) (6.25)
and note that Ayg(¢) = Py (¢) which verifies the relationship in (6.24).

Another intuitive way of verifying this relationship is to note that as 7 — 0 we are no longer
quantizing the latent RV. This view is consistent with (6.23) and (6.24).

6.6.2 The Effect of Quantization Bin Size as 7 — oo
To illuminate the effect of an increasing 7 on (6.10) and (6.15) consider the case when
T — oo. It can be seen that

lim pp(x) = 6(x) (6.26)

since as T — o0, ag — 1 and a,, — 0, Yn # 0. Note that as T — oo the center bin extends
to cover all of R! and thus the output of the quantizer is deterministic. To see this, consider
(6.13). Here the difference of [®(n7 + 7/2) — ®(n7t — 7/2)] — 1 since the integral in (6.14)
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Figure 6.10. The CF as 7 — o0

as T — oo forn = 0is

nt+t/2 oo
lim / PN (x)dx = / pn(X)dx =1 (6.27)
=% Jnr—1/2 n=0 —00
Conversely, Yn # 0 the limit is
nt+7/2 o -0
lim PN (x)dx = / pN(X)dx = / pn(x)dx = 0. (6.28)
T nt—7/2 n#0 =) —00

Note that this relationship can be extended to any probability density function since Pr[x <
o] =1, Pr[x < —oo] = 0 for any RV X, and since the CDF is monotonic.

Similarly, let 7 — oo for Py(¢). This time the separation between A,—; and A, will go to
0 which follows from the limit of 27/7 as 7 — co. Because Py (¢) is the sum over all n
we find

lim Py(¢4) =1 (6.29)

which is verified numerically in Figure 6.10. Here we find that the limit is reached quite

quickly at around 100. Note also that V7, Pn-(0) = 1 satisfying the requirement that
[ pnr(x)dx = 1.
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The result in (6.29) can be verified by taking the Fourier transform of (6.26)
5(x) & 1 (6.30)

which follows from the requirement that py(x) L Pn (@) Y1. Therefore, the Fourier

pairs must agree at all extrema of 7.33

6.7 The Variance of a Quantized Random Variable
Recall that the k™ moment can be derived from the CF via the relationship [65]
1 d*Py
E{N"} = —kﬂ‘ . (6.31)
J5odet yo

We proceed from (6.31) with the CF in (6.15) and the definition (6.8). Note that because (6.8)

is zero mean, then the case where k = 2 is equivalent to the variance (i.e., E{N 21 = g2).

Rather than derive a closed form solution for (6.31) we use the relationships derived in the

previous section for the CF at extrema of 7 in order to investigate the effect of 7 on E{N 21,

Consider first the case when 7 = 0 such that (6.24) applies. Using (6.31) it is easy to
verify that E{n"?} = E{5?} since (6.23) and (6.24) hold. The result is also found directly in
Appendix E through evaluating (6.31). Now let 7 = € where € is some positive, arbitrarily
small number. Since € is small it is not necessary to consider any A, (¢ — 2nn/7) where
n # 0. This follows from the fact that the term when n = 1 is found at 27/e. If € is
sufficiently small then this value of this term at zero will effectively be zero. This result is
proven in Appendix F. With this in mind, and for sufficiently small €, the variance of N’ is

found via
_d*Ao(9)

E{N"?} = .
d¢? |40

(6.32)

33Section 6.6 is revised from [29].
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Using the product rule, the derivative can be evaluated as

2
2PV @PN @) =
d?
Pu(#)L e (o) + PPN (@) (6.33)
d
+ 2d—¢PU<¢>%PN<¢)

Notice that when evaluated at ¢ = 0 the first and second derivatives of Py (¢) are 0 and
—0? respectively. Also, note that Py (0) = Py(0) = 1. After applying these observations
and distributing the negative sign we can simplify (6.33) to

d*Ao(¢)
—°2¢ = . PU(</>) . (6.34)
d¢” =0  d¢ $=0
This derivation is made more rigorous in Appendix E. Since Py (¢) is concave down V7 > 0
at ¢ = 0 we have that
E{N?} < E{N"*} (6.35)

where the inequality is strict for a sufficiently small and non-negative e34.

Next consider the case when 7 = co. Recall from (6.29) that Py (¢) = 1. It can be verified
that the second derivative is O for ¢ = 0. This result is found explicitly in Appendix E.
Thus, when 7 is very large the variance of N’ becomes very small such that the inequality

in (6.35) is reversed for a sufficiently large 7.

This behavior of the variance as T — oo requires that [11;(x) is not shifted relative to the
mean of NV. In other words, ¥ = 0 for I1I,(x — ¢) in Q. The difference in pn-(x) is shown
in Figure 6.11 for ¢ = 0 (left pane) and ¥ = 7/2 (right pane). Subsequently, we will show

that these values of i are particularly important when evaluating the extrema of E{N'}.

34The value of the second term in (6.34) can be calculated to a high degree of accuracy using Sheppard’s
corrections [69] when 7 < o [65].
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To continue the analysis, consider when ¢ = 7/2 such that

PN ) ymrp = D @ngd(x—nt =) = @nepd(x=3n7/2)  (636)

y=t/2 7"

and again let T — oco. In this case, we can approximate

1 1
limpN/(xlw)‘ =—0(x+71/2)+ =0(x —1/2). (6.37)
T—00 v=t/2 2 2
The proof for this result is given in Appendix E.

By inspection of (6.37), it follows then that as 7 — oo, E{N 2} — co. It can be shown that
as ¥ increases (or decreases) from ¢y = 7/2 for a constant T where ¥ € [0, 7], the second
moment of N returns to zero. It can further be shown that these variance maxima occur
for values of ¥ = k7 + 7/2 which have corresponding minima at ¢ = k7t for k € Z. For

sufficiently large 7 the second moment then exhibits periodic behavior with period 7. The
proof for these results are given in Appendix E.

Having established that E{ N 2} is periodic in ¥, let

E{N"?} = Bf(y,7) + C (6.38)
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where f(-) is a function which is periodic in ¢ with period 7. The amplitude of f(-) is 5 and
has offset C. It will subsequently be useful to determine the 7 for which E{N Y <C- B/2
(i.e., the value at which the variance of the quantized RV is guaranteed to be larger than
the variance of the latent RV Yy, E{N?} < E{N’?}). To find this range let = 0, which
we have previously seen, is the minimum of (6.32). To make calculations more tractable
we only consider n € {—1,0,1} in (6.10). Because this function is even, the value of
a_1 = a; = ®(—7/2). The desired bound on the variance of this probability mass can then
be shown to be (cf. Appendix G)

2720(-1/2) < o (6.39)

where equality holds when 7 ~ 3.40~. Thus, we state that 7 < 3.4¢ is a necessary and
sufficient condition such that the inequality in (6.35) holds Vi .

To better illustrate the relationship between ¢ and E{N"*} consider Figure 6.12. Here the
shape of (6.38) is shown for various values of T when ¢ € [0, 7]. Both ¢ and the variance
have been normalized such that it is easier to compare the effect of T and . First, note that
as 7 increases the amplitude S also increases. As previously calculated, (6.38) always stays
above oy for 7 < 3.40°. As 7 increases beyond this bound then the minimum value of the

variance may drop below oy for certain . Second, note that for sufficiently small 7 (e.g.,
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T < o in this study) the observed variance of N’ is very close to the corrected variance
of N which agrees with Sheppard’s famous corrections [69]. However, as T grows above
o the correction becomes less accurate. As the trend in the Figure 6.12 suggests, and the
analysis has shown, for larger 7 the minimum of (6.38) will eventually reach zero and the

maximum will grow to infinity.33

6.8 Information Loss in a Quantized Random Variable

Here, following [65], we invoke the analogy of traditional sampling theory and the Nyquist
rate in order to investigate injectivity in N' — Q(N). Recall that when sampling a signal,
the sampled output is considered representative of the input continuous-time signal if and
only if the sampling rate is greater than or equal to twice the highest frequency in the
continuous-time signal. If this condition is met we may say that the sampling operation is
injective. Stated another way, if the former condition is met, we may perfectly recover the
continuous-time signal from the sampled representation because the sampled representation

contains all of the information of the original signal.

Notice the similarity between sampling and quantization. The connection is illustrated by
the second step in defining Q which involved multiplication of a scaled impulsion train
IIT-(x) with the convolved latent density. If our goal is to recover the latent density
then the conditions necessary and sufficient for said recovery is of interest. Widrow’s
First Quantization Theorem (QT1) states that if a RV is bandlimited3® by +x/7 then the
distribution and CF of the latent RV can be perfectly recovered [70]. The implications of this
theorem are far reaching, however, many real-world RVs are not bandlimited. For instance,
the normal RV is an example of an extremely common RV whose CF has infinite support.
Thankfully, Widrow also noticed this difficulty and showed in his Second Quantization
Theorem (QT2) that an approximately bandlimited RV (relative to the bin size 7) can
also be recovered with high fidelity [70]. The recovery of moments is closely related to

Sheppard’s correction, which is shown here for the second moment [69]

2 2 7
E{n~} =E{n"} - T (6.40)

35This section is revised from [29].
36Widrow uses the term “bandlimited” to define the case when a CF has finite support [65].
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Widrow offers 7 < o as a rule of thumb to define the condition necessary to satisfy

QT2 [65]. The efficacy of this rule of thumb is verified by inspection of Figure 6.12.37

6.9 A Lower Bound for the Variance of a Quantized Ran-

dom Variable
Here, we invoke the CRLB (cf. (6.1)) to show it as an appropriate lower bound for a

quantized RV.

Theorem 1: For a latent RV, parameterized by 6
Varg{p} > CRLBy, 7 € [0,3.40] (6.41)

where P is an unbiased estimator of theta which uses quantized observations of the RV to

estimate 0.

Proof: Consider the RV N which is then quantized with bin size 7 and = 0. If we
let 7 — O then the relationships (6.24) and (6.23) apply and the proposition becomes the
standard CRLB.

Next, as 7 increases from zero (6.10) can also be seen as a sum of shifted and scaled
Bernoulli “pseudo-distributions”. We note that each of the pseudo-distributions is not
a true distribution since the resulting sum must satisfy foo pn(x)dx = 1 and therefore
0< foo Pa, (x)dx < 1VYn where p,, (x) is the n® pseudo-distribution.

Next, recall that the Fisher information of a Bernoulli RV is given by 7 (p) = 0'1;2 where
0',% is the variance of a Bernoulli RV. Therefore the Fisher information of the quantized RV
is given by

I(x) =Y Lip) =y 57 (6.42)
where &2 is the pseudo-variance of the n™ Bernoulli pseudo-distribution.

Now we have already shown, and Sheppard’s correction for the second moment (6.40)

37This section is revised from [29].
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Figure 6.13. The variance of a MLE of a quantized RV parameterized by 7
is presented for two different offsets y. Source: [29].

verifies (c.f. also Figure 6.12), that for small 7 the following will hold
> L) < T(x). (6.43)
n

Stated another way, the variance of the quantized signal must not be smaller than that of
the latent signal. Therefore, the Fisher information of the observed RV will not be larger
than the Fisher information of the latent RV and the inequality in the theorem will be strict.
Similarly, we have shown that the variance of the observed RV will be greater than the

original for 7 < 3.40 so the proposed bound will hold for 7 € [0, ~ 3.407),Vy. N

To verify the theorem is valid consider a normal RV N (u, o?) which is quantized and
the parameter to be estimated is the mean, u. We show the results of a numerical study
in Figure 6.13 in which we estimate u via the standard maximum-likelihood method for
various bin sizes, 7. It can be seen that for any shift in the bins (i.e., Vi) that the resulting
RMSE lies above the CRLB for 7 < 3.40- which supports Theorem 1. Conversely, for
values of 7 2 3.40, the results shown in Figure 6.13 demonstrate that CRLB will not be
appropriate Yi. Thus, without a priori knowledge of the exact annular offset ¢, the a lower

bound cannot be realized.

Note that for smaller relative values of 7 (e.g., T € [0, o)) the deviation from the latent RV
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variance is minimal. Thus, it will be that the bound presented in Theorem 1 is not strict and
an efficient estimator will achieve the lower bound. In other cases where 7 is larger and the
quantized variance deviates from the latent variance, an efficient estimator will not meet
the lower bound as defined by the latent variance and the inequality in the theorem will be
strict. However, for smaller 7 the deviation of the quantized RV variance from the latent RV
variance can be calculated with a high degree of fidelity via Sheppard’s correction (6.40).
Thus, the bound can be adjusted in this manner to show a tighter lower bound for larger t

and evaluate the efficiency of estimators.38

38This section is revised from [29].
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CHAPTER 7:
The Timing Advance as a Quantized Random

Variable

In this section, we describe the TA as a quantized RV and compare the current RV with
that of a legacy cellular protocol. We then derive a MLE and lower bound for the TA-based

position estimate through showing that the LTE TA satisfies the requirements of Theorem 1.

7.1 Spatial Quantization in Cellular Networks

It is not difficult to see that the TA is a quantized RV. First, the base station must make
a distance estimate based on the time of arrival of a UE’s uplink frame which we model
as a normal RV. The assumption of normality associated with this phenomenon is well
accepted in the literature [7], [10]. Next, the eNB must determine if the measured distance
necessitates adjustment to the UE’s timing. Because the base station can only affect timing
adjustment in discrete units, the timing mismatch must be greater than 7/c in order for
an adjustment to be issued. Hence, the TA can be seen as quantizing the UE’s distance

from the serving eNB to the nearest multiple of 7 as in Figure 7.1. Recall that, in LTE,

Figure 7.1. The quantization of the TA

71



7 =78.125 m (cf. (4.4)).

The quantization scheme depicted in Figure 7.1 is also applicable to GSM where 7 =
550 m [40]. The difference in quantile size for GSM and LTE can be attributed to tighter
timing alignment required in LTE in order to support higher data rates. To highlight how
the change in quantile size from GSM to LTE affects the statistics of the problem, let first
OBrs = 0.np = 0. In other words, let the latent RV associated with the eNB(BTS) error
estimation of the UE distance be approximately the same. Let o = 50 m following our
review of field measurements in Chapter 4. Next, recall that the lower bound associated
with a quantized RV is the CRLB as long as 7 < 3.40 (cf. Theorem 1).

For LTE this condition holds since
TITE = 1.560. (71)

This assures that there is a finite lower bound on the measurement error and that the error

will be approximately independent from the annular offset, .

Conversely, in GSM the condition does not hold since
esm = 1lo. (7.2)

Thus, the performance of the position estimate will be highly dependent on . This
means that if the target UE is a favorable distance away from the BTS (i.e., d = nt so
that = 0) then the variance of the position estimate will go to zero as T — oo (cf.
Figure 6.13). Alternatively, if the target UE is not a favorable distance away from the BTS
(i.e., d = nt + 7/2 so that ¥ = 7/2) then the variance of the position estimate will become

very large as T — oo (cf. Figure 6.13).

Therefore, the tighter timing alignment in LTE marks a significant change in how the
TA can be used for positioning. In LTE the TA can be used with relatively consistent
results. Conversely, the performance associated with TA-based positioning in GSM will

vary significantly since ¢ is generally not known a priori.
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7.2 A Maximum Likelihood Estimate and Lower Bound
for Timing Advance Positioning

In order to derive a MLE for a UE position we must first characterize the distribution of
error after quantization pa(x) which is shown in Figure 6.6 and given in (6.10). However,
we have shown in (6.37) that the shape of the density is parameterized by . Despite this
fact, we will further show that it is also appropriate to model all possible py(x|y) with a

single density that is independent of .

To begin, let py (x, ) be the joint density of the error in the distance estimate and annular
offset . Next, let py-(x) be a normal marginal density of pa-(x,¢). Recall, that this
choice of a distribution models the continuous error associated with distance measurement
and is widely accepted in the literature [7], [10]. To arrive at pn-(x|y), contrast the effect
on I1I(x — ) of when a UE is positioned in the center of a TA annulus (¢ = 0) with when
a UE is on a TA boundary (¢ = 7/2) which is shown in Figure 6.11. Upon inspection,
it appears that py-(x) and py(y¥) should be dependent since the shape of pa-(x|y) is
completely dependent on yy. However, it has been shown that if the conditions of QT1 or
QT2 are satisfied then pa(x) and py () are, in fact, independent [71], [72].

The implications of this paradoxical independence on the TA as a RV is that regardless
of where the UE is located within a TA annulus, the error can be modeled with the same
density assuming the conditions of QT1 or QT2 can be met. This is an important fact
to establish in order to make an MLE which is independent of ¢ tractable. It is obvious
that neither 7gs) or 7.7 meet QT1 since the latent, unquantized, RV (Gaussian) is not
bandlimited. Fortunately, QT2 only requires approximate bandlimitation. It can be seen
from (7.2) that GSM does not satisfy QT2. However, from (7.1) it can be seen that LTE
does satisfy QT2.

Thus, in addition to providing consistent results from TA-based positioning, the tighter
timing alignment in LTE also allows us to formulate a MLE independent of y allowing for

tractable analysis and making a closed form solution possible.

To see this consider the joint density presented in the left pane of Figure 7.2. When the
joint density is rotated such that the ¥ dimension is not visible, as in the right panel, one

can observe the latent normal density. If the value of ¢ is completely unknown it would be
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Figure 7.2. The joint and marginal density of the error associated with
TA-based positioning is presented. Adapted from [29].

reasonably modeled as a uniform RV. Thus, by integrating
/PNf(XIlﬁ)Pw(lﬁ)d¢ (7.3)
¥
we find pn-(x) ~ N (0,0%). However, because i and x are independent

/ e (Xl P @) dws = () / pe@)dy
v V4 (7.4)

= pn(x)
therefore py(x) ~ N (0, o?) regardless of the shape of py(¢).

Having established pa- (x|¢) = pn(x), we can now formulate the MLE for a set of single

distance measurements d = [ci 1, cfz, R d ~]T from N distinct eNBs as

p = arg max p(d|d) (7.5)
|Y
I’ 1" is a vector of true

where p = [X, §]° is the position estimate and d = [dy,da,...,dnN

distances such that d; = d + N’. The solution to this program for normally distributed
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measurement error is well-known as [10]

N n
(d;i —di)(x — x;)
-0 7.6
; i (7.6)
N N
Z (d; — d,)z(y ~¥) _q (7.7)
i=1 oidi

Solving (7.6) and (7.7) directly involves an exhaustive search in p. However, numerical
solutions have been proposed that have been shown to be statistically efficient (e.g., [31]).
A further difficulty of (7.6) and (7.7) is that they depend on the true distance estimate d;

which is obviously not known a priori.

Here, we adopt two methods for approximating the solution to (7.6) and (7.7). In the first
approach we approximate the MLE as [73]

N

p=argmin ) (di - p—pill)’ (18)
i=1

where p; = [x;, y,-]T is the position of the i eNB. The sum can easily be extended to include

a CeSAR measurement by

~ . ~ ’ 2 N ~ 2
p=argmin ('~ | p-p'Il) + > (di-llp-pi ) (7.9)
P i=1
where p’ = [x’, y’]” is the position of the CeSAR sensor.

In this way, each term in the sum represents the squared residual error associated with each
position in p given the distance measurements d. The p which minimizes the sum of the
squared residuals is taken as the position estimate p. This approximation will be valid only
for the case where each o; = o, Vi and is thus a necessary condition. This is a well-known
technique which is widely accepted, especially in the case where the error cannot be exactly
parameterized by a probability distribution [10]. Note that (7.8) and (7.9) do not depend
on any d; thus removing a significant obstacle associated with (7.6) and (7.7); however, the
solution to (7.8) and (7.9) cannot be found in closed form. Instead, numerical means must

be leveraged which can still be computationally expensive [10].
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The second solution we leverage takes more of a brute force approach which trades compu-
tational complexity for a solution which is not nuanced by idiosyncrasies associated with
more complex approximate methods (e.g., the non-linear solver associated with the numer-
ical solution to (7.8)). This solution first computes a single error surface over the tracking

area. Assuming each measurement to be independent of the next it can be defined by

N
pdip) = | | p(dilp). (7.10)
i=1

An optional equivalent surface, relative to the solution of (7.6) and (7.7), which may be

more convenient can be expressed as
N
p(dIp) = ) log p(d;Ip) (7.11)
i=1

where p(d|p) is known as the log-likelihood function of d. The sum in (7.11) can be
extended to include a CeSAR measurement so that

N
p(dIp) = logp(d'|p) + ) log p(d;lp). (7.12)

i=1
Because the value at each point in the error surface must be computed individually, the
surface necessarily will have some granularity which can be thought of as sampling. The
granularity will vary inversely with the computational load. Thus, the higher the resolution
of the surface, the higher the computational load. This surface is then exhaustively searched
for the global maximum. A second surface, with a higher resolution and smaller area, is
then calculated around this global maximum in order to refine the estimate. The global

maximum on the second surface is then taken as

p = argmax p(d|p). (7.13)
1Y

This method, while computationally costly, will later be shown to be efficient in the sense
of the lower bound derived in Chapter 7 while, similar to (7.8), not being dependent on any
d;.
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A difficulty associated with each of these solutions is that a valid starting point must be used
in order to avoid the local maximum trap. Therefore, we assume an a priori knowledge of
the general target location such that the local maximum trap is avoided. In order to highlight
more relevant points in the results and avoid sources of error associated with local maxima
we initialize each solution with the true location of the UE. We recognize this artificiality
in the experimentation while also noting that optimization of difficult objectives with local

maxima is a well-traveled subject in the literature and not the focus of our research.

Finally, because the p generated in this way are not exact, we hereafter refer to solutions

made via one of the two aforementioned methods as the approximate-MLE (AMLE).
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CHAPTER 8:

Results

In this chapter, we present results that support the previous analysis and describe the perfor-
mance of TA-based positioning with and without CeSAR augmentation. Furthermore, the
ability of CeSAR to mitigate geometric weaknesses in the network infrastructure is demon-
strated. We first show the accuracy of TA-based positioning and CeSAR augmentation in
various scenarios using synthetic and empirical data. Next, we show the MLE to be an

efficient estimator in the context of the lower bound derived in Chapter 7.

The results presented herein have been largely previously published (or are submitted for
publication) [21], [24], [28], [29]. Specifically, Section 8.1.1 is revised from “Cellular
Synchronization Assisted Refinement (CeSAR): A Method for Accurate Geolocation in
LTE-A Networks” by John Roth, Murali Tummala, and James Scrofani published in the
proceedings of the 49" Hawaii International Conference on System Sciences in January
2016 [24]. Section 8.1.2 is revised from “Location Privacy in LTE: A Case Study on
Exploiting the Cellular Signaling Plane’s Timing Advance” by John Roth, Murali Tummala,
John McEachen, and James Scrofani to be published in the proceedings of the Hawaii
International Conference on System Sciences in January 2017 [28]. Section 8.3.2 is revised
from “On Location Privacy in LTE” by John Roth, Murali Tummala, John McEachen, and

James Scrofani which has been submitted for publication [29].

8.1 Accuracy of Timing Advanced-Based Positioning
In this section, we use synthetic and empirical data to examine the achievable accuracy

associated with TA-based positioning and CeSAR augmentation.

8.1.1 Synthetic Results

First, using only synthetically generated measurements we evaluate performance in several
scenarios of interest. Specifically, we investigate performance in legacy deployments,
handover scenarios, and in heterogeneous networks. When CeSAR is included, no error is

assumed in the CeSAR measurement and the most central point on the refined locus is used
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Figure 8.1. Results of positioning with synthetic data in a legacy network
deployment is presented. The refined estimate is the result of CeSAR aug-
mentation. Source: [24].

as the position estimate. When CeSAR is not used, the centroid of the locus is used as the
position estimate. Additionally, sectoring of the serving cell is not assumed in any study.

Excerpts from this section are taken from [24].

Legacy Deployments

First, we present results in several different scenarios realized with entirely synthetic mea-
surements. In this section, TA error is modeled as uniform U ~ [-78.125/2m, 78.125/2 m]
and the target and sensor are randomly placed throughout the coverage area (max distance
~ 500 m) such that the distance from the PCell is uniform as is the angle from the abscissa.
It additionally imposed that the sensor-UE distance is > 78.125 m. The first study uses only
one serving eNB (PCell) in order to model performance in legacy LTE networks. When a
position estimate is made with TA data only p is chosen randomly inside the TA annulus
such that the polar angle is uniformly distributed € [0, 27r) and annular offset i is uniformly
distributed € [nT — 7/2, nT + 7/2]. The results are presented via a cumulative distribution

of errors in Figure 8.1.

The low performance in this technique can be explained by the high degree of uncertainty

offered by a large locus. Small errors are representative of scenarios when the TA quantity is
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small (i.e., the UE is physically close to the eNB) or in the unlikely scenario that the estimated
position is chosen very near to the actual target location. Large errors are accounted for
by large TA values (i.e., the UE is near or on the cell boundary) and when the estimated
position is chosen on the opposite side of the annulus as the true target location. Of special
note is this curve’s very uniform appearance with the slight non-uniformity accounted for

by the non-linear shape of the locus.

The second curve presented in Figure 8.1 contrasts the performance improvements that can
be realized through CeSAR. This curve presents in much more of an exponential distribution,
shifting the preponderance of errors to much lower values. Here, CeSAR results in 254 m

improvement in the circular error probable (CEP) 70% metric.

Despite significant improvement from the former method, notable large errors are still
present. These large errors are realized when the intersection between the circle and annulus
results in two separate line segments (disjoint locus) and the estimated target location is
on the opposite segment from the actual target location. Again, larger TAs result in the

potential for larger errors, thus cell size can be linked to accuracy.

Handover Scenarios

In the next study, still in keeping with legacy network deployments, we investigate the
performance of TA-based positioning during handover events. The handover scenario is
particularly interesting since two TAs are issued from neighboring eNBs to the same UE
within close succession of each other thus providing additional information when forming

the system of equations used to generate a position estimate.

For this study, we assume that the UE is located on the cell boundary between two eNBs as
defined by N (ucp, af_b) where o, = 70 m and p.p, is the exact cell boundary. This model
is used in order to take into account the fact that handovers do not always happen precisely
at cell boundaries. The value of o, = 70 m is chosen to be slightly larger than measured

errors in eNB distance measurements (cf. Chapter 4).

As can be seen in Figure 8.2, we see a significant improvement in performance both with and
without CeSAR from the previous scenario. This improvement is directly attributable to the

extra positioning information associated with the second eNB. When this extra information
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Figure 8.2. Results of positioning with synthetic data in handover scenarios
is presented. The refined handover is the result of CeSAR augmentation.

Source: [24].

is augmented by CeSAR the improvement becomes even more dramatic. The CEP 70%
is 200 m without CeSAR and 41 m with CeSAR. Most notable, however, is the large

improvement afforded by the extra information associated with the second eNB.

Heterogeneous Deployments
Motivated by the results realized in the previous section by including a TA from one

additional eNB, we investigate the achievable performance possible in heterogeneous de-
ployments. Recall (cf. Chapter 4) that LTE release 11+ deployments may include physically
disparate eNBs known as SCells which simultaneously provide service to a single UE. Be-
cause there is no requirement that the eNBs are near each other, each eNB is responsible

for maintaining timing alignment with the UE by issuing separate TAs attributable to the

respective PCell or SCells via the TAG [50], [54].

In order to model this type of deployment, the sensor and UE locations are randomly chosen
as before. The first SCells positions are chosen with distribution N (uy g, O'fm) where
HyE = [xuE, yuel! is the location of the UE randomly chosen a priori and o, = 200 m.
This model is adopted in order to add realism to the simulation since UEs are more likely
to be associated with SCells which are nearby. Additionally, the SCells will likely have a
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Figure 8.3. The results of positioning with synthetic measurements within
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are configured along with the PCell. The results in the left pane are from
TA-only positioning while those in the right pane are CeSAR augmented.

Source: [24].

smaller coverage area represented by op,. The results of varying the number of configured
SCells from one to four is presented in Figure 8.3 without CeSAR in the left pane and
with CeSAR in the right pane. A maximum of four SCells is considered since that is the

maximum number of SCells the standard is designed to support (cf. Figure 4.2).

In the case of TA-only positioning the CEP 70% ranges from 39.7 m with one SCell
configured and 23.5 m with four SCells configured. For CeSAR augmented positioning the
CEP 70% ranges from 32 m with one SCell configured to 14 m with four SCells configured.
For both regular and CeSAR augmented TA-based positioning, this marks a significant
improvement from single eNB legacy networks. We also see that CeSAR continues to
deliver performance gains even in deployments with many serving eNBs although the
magnitude of the performance gains are on the order of 10 m as opposed to legacy networks
where the improvement could be as large as 150 m. Finally, of note is the difference in the
shape of the error distribution between CeSAR augmented and TA-only positioning. The
CeSAR augmented errors appear approximately exponential while those that result from
TA-only positioning have a Rayleigh-like shape. Thus, CeSAR augmentation will realize

more small errors than the TA-only option.
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Summary of Synthetic Results

In legacy single PCell deployments with no cell sectoring we found that the CEP 70%
accuracy was 412 m when only the TA was used for localization. When the position
estimate was made during a handover scenario, the TA-only accuracy improved to 200 m
CEP 70%. Finally, in heterogeneous networks that accuracy further improved to 39.7 m -

23.5 m for one to four SCells configured respectively.

With CeSAR augmentation, we have demonstrated that, in non-sectored cells, a user could
be reliably located during normal legacy intra-cell mobility management to within 158 m, a
254 m improvement over TA-only positioning. Inter-cell mobility management showed an
accuracy of 41 m, an improvement from TA-only positioning of around 159 m. In advanced
heterogeneous LTE deployments the multiplicity of TAs issued to a target UE improve
positioning accuracy dramatically. Here, CeSAR can deliver excellent performance on the
order of 14 meters although the performance gains are not as significant as in legacy network

scenarios.3°

8.1.2 Empirical Results

In this section, we present two case studies conducted in Monterey, CA in existing LTE
network deployments. In both cases, real-world TA data observed in the network are used
and the position estimate is made offline. Both scenarios, depicted in Figure 8.4, include two
actual serving eNBs and a notional sensor if CeSAR augmentation is used. In both cases,
the track taken by the UE is shown alongside the infrastructure. Scenario A (cf. Figure 8.4,
left pane) includes a UE track that is 277 m long and includes 73 recorded TAs in the 700
MHz and 2000 MHz bands. Scenario B (cf. Figure 8.4, right pane) includes a UE track
that is 830 m long and includes 323 recorded TAs in the 700 MHz, 1900 MHz, and 2000
MHz bands. Both scenarios are conducted in suburban settings free from major physical
obstructions like skyscrapers or other dense urban clutter. Also, in both scenarios, the UE
is traveling at ~ 50 km/hr. In the event that CeSAR augmentation is used, a notional sensor
is included as in Figure 8.4. CeSAR measurements are modeled with normal zero-mean
error with . = 20 m. In both scenarios, the position estimate is calculated via the AMLE
in (7.8) or (7.9).

39This section has been revised from [24].
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Figure 8.4. The infrastructure and tracks used in two case studies conducted
in Monterey, CA is presented. Source: [28].

At the time of this study, the tested network did not support physically disparate carrier
aggregation. Therefore, simultaneous TA issuance was simulated in the field by locking a
field test phone to one eNB, driving the track depicted in Figure 8.4, then locking the phone
to a neighboring tower and driving the track again. TAs were elicited and the phone was
kept in the RRC CONNECTED state by continuously sending ping requests throughout the test

drive.

The results of the above two scenarios are shown in Figure 8.5. In terms of CEP 70%,
scenario A was accurate to 240 m and scenario B was accurate to 295 m. In both scenarios,
CeSAR augmentation improved positioning accuracy. The CEP 70% metrics improved after
augmentation to 95 m and 157 m respectively. In both scenarios, results roughly matched
the positioning accuracy predicted in simulation during a handover scenario above. This
is remarkable, especially given that the network performance was stretched by forcing a

connection with a certain eNB while traveling outside of its normal coverage area.

This study corroborated previous simulation performance in handover scenarios in an
existing LTE network in Monterey, CA. Moreover, real-world data were used to present a
realistic picture of the accuracy possible with TA-only and CeSAR augmented positioning.

CeSAR augmentation was further validated by demonstrating performance enhancements
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Figure 8.5. Positioning performance achieved during the case studies per-
formed in actual network deployments in Monterey, CA. Source: [28].

of around 150 m.40

8.2 Empirical CeSAR Validation

In this section, we evaluate the performance of CeSAR in terms of CEP with data exclusively
collected during experimentation. As before, TA data are collected from a nearby serving
eNB and processed in accordance with the aforementioned precepts. The main contribution

of this experiment is to introduce real-world CeSAR data.

8.2.1 Experimental CeSAR Setup

As depicted in Figure 8.6, all steps of the CeSAR method are tested with the exception
of sensor-network synchronization which is assumed a priori. The observation of TAs is
conducted as before with a field test phone. Observation of uplink bursts is conducted
on-site in SDR. Finally, the sensor-UE distance estimate is made as before in the MLE with

the assumption that the CeSAR error is normally distributed.

Of these steps, observation of uplink bursts is the most involved and represents the most
significant contribution made by this experiment, which separates it from previous experi-

mentation where CeSAR ranging data are synthesized. The sensor hardware implementation

40This section has been revised from [28].
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Figure 8.6. The CeSAR algorithm in field experimentation

is as presented in Section 5.2 (cf. Figure 5.2) and the overall system setup is as shown in
Figure 8.7. A single USRP was used to transmit and receive a simulated UE uplink frame.
The time-of-flight of the frame was measured and used to estimate the sensor-UE distance.
The transmit antenna was placed in the transmit location and the USRP was collocated
with the receive antenna at the receive location. The transmit antenna was connected to the
USRP via a 150 m coaxial cable. Additionally, several amplifiers were used in the system
to overcome losses associated with propagation along the coaxial cable and through free

space. The link budget, along with a detailed system diagram is given in Appendix H.

A single USRP with synchronized TX/RX chains was used due to difficulties associated
with synchronizing physically disparate USRPs. When synchronizing USRPs via GPS
disciplined oscillators the best achievable synchronization had a standard deviation of
~ 40 us. This magnitude of synchronization mismatch translated to 12 km and was judged
untenable for the application. Conversely, synchronization among TX/RX chains resident
on the same SDR daughterboard resulted in errors of no more than 40 ns. Thus, intra-device

synchronization was used.

Rx Tx
T Measured Distance &’ { Y

Coaxial Cable (150 m)

USRP
N210

Figure 8.7. The experimental CeSAR system setup
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To Scale

eNB

Figure 8.8. The field CeSAR test site depicted above is located in Mon-
terey, CA. Distances inside the dashed box are drawn to scale; however, the
relationship of the eNB to the local test site is not.

The time-of-flight calculation was made by transmitting a binary phase-shift keyed (BPSK)
pseudo-noise (PN) sequence and matched filtering the received signal. The PN sequence
was generated by a Galois linear feedback shift register (LFSR) of order 12 (4095 chips
long). This length was chosen as a trade-off between maximizing the processing gain
and minimizing the processing time. The signal was generated with the GNU Radio
software platform#!. While an uplink frame in LTE would be modulated by orthogonal
frequency-division multiplexing (OFDM), the choice of BPSK modulation can be seen as a
conservative choice when estimating performance since it will be more affected in a fading
channel than its OFDM realization. The BPSK signal was transmitted at 915.1 MHz in
order to simulate cellular frequency propagation characteristics while still operating in an
unlicensed band. The sample rate of the N210 was set to the maximum allowable rate, 25
MSps. This sample rate maximized the final resolution of the scheme to 1/25 MSps = 40

ns which translates to roughly 12 m.

The field test site is shown in Figure 8.8. Due to its the location, there was only one available

41See Appendix I for the python code used to synchronize the TX/RX chains and generate the transmitted
signal.
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serving eNB. This eNB is shown in Figure 8.8 (not to scale) three quarters of a kilometer
south of the test site. The sensor remained stationary throughout the experiment and the
target was moved to each of three locations: A, B, and C. At each location the sensor
measured the UE-sensor distance as outlined above 100 times and received TAs from the
serving eNB. Measurements were validated by ensuring the value of the correlation peak
resulting from the matched filter was sufficiently high. Only one measurement taken at site
A was a statistical outlier and discarded. 101, 74, and 80 TAs were collected at sites A, B,
and C respectively after statistical outliers were discarded. The operating bands used while
these TAs were issued were 700 MHz and 2000 MHz. As previously mentioned, the eNB
bias was assumed a priori and taken into account when estimating d;. The distribution of

the TA and CeSAR measurements are presented in box plots in Figure 8.9.

We note that this particular experimental setup, by the nature of physical constraints (e.g., the
available serving eNBs and the length of the coaxial cable), is an example of a pathological
geometry (cf. Chapter 6). In these experiments otpa ~ 68 m for TA data and ogn, ~ 23 m
for sensor data. Therefore, assuming worst case o, the test sites should be at least 30-Tp
off the symmetry directrix described by the sensor and eNB to prevent measurement bias,
however, the length of the coaxial cable would not allow this, thus forcing pathology (i.e.,
bias) in the setup. The bias was manifested here due to the circles representing distance
estimates not intersecting (cf. Chapter 6). This resulted in a preponderance of the estimates
lying on the directrix. Thus, because the geometry is pathological it cannot be compared to

the lower bound previously derived.

8.2.2 Empirical CeSAR Results

The measurements were used offline to calculate the position estimate and the results are
presented in Figure 8.10. Because only two anchor points are used during the calculation
(i.e., the sensor and the eNB), the system of equations represented by d is underdetermined.
Additionally, the proximity of the sites to the sensor makes the geometry pathological as
described in Section 6.3, thus the estimate is found with the residual error method (cf.
(7.8)). The results, in terms of CEP 70%, were 53.6 m, 77.3 m, and 57.8 m for locations
A, B, and C respectively. The mean values were 60.7 m, 74.3 m, and 61.6 m for sites A, B,
and C respectively. The curves show that the vast majority of the errors are small, however,

a significant tail is also observed indicating infrequent, but large errors. Regardless, a
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Figure 8.9. Box plots of empirical CeSAR validation measurements

level of accuracy which may be able to meet the FCC’s E-911 mandate is demonstrated.
Considering that in this experiment d is underdetermined (two equations), CeSAR presents

as a viable option to satisfying federal standards+2.

8.3 Efficiency in Timing Advanced-Based Positioning

An estimator is said to be efficient if it asymptotically attains the CRLB [48]. In other
words, an efficient estimator will be able to attain the CRLB with an infinite number of
corrupted observations. In this section, we show that TA-based location estimation can be
efficient and demonstrate the maximum achievable bounds for this type of positioning with
synthetic and real-world TA data. Note that since, for LTE, 7 ~ 1.50 Sheppard’s correction
is used when calculating the CRLB#3.

8.3.1 The Effect of N and the NLoS Channel
In the first study, we position notional eNBs on a scaled circle centered around the target
UE as in Figure 8.11. Since the positioning accuracy is dependent only on the angular

geometry and not the target-eNB distance (cf. (6.5)), the radius of the circle is some

“2The FCC’s E-911 mandate requires that Pr[|| po — P ||[< 100 m] = 0.67 and Pr[|| po — P ||< 300 m] =
0.95 [4], [5].

43Refer to the discussion of Theorem 1 in Chapter 6 for more information on the necessity of this when
showing the efficiency of an estimator using quantized observations of a RV.
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Figure 8.10. CDF of positioning with empirical CeSAR measurements

arbitrary distance r. Each eNB has a fixed angular separation of 27/(N,;ux + 1) from
the next as in Figure 8.11. The study is repeated for a different N € {3,9} such that the
angular separation 6 = 27 /(Ny,qx + 1) is held constant and the number of eNBs N is varied
up to Npax = 9. When positioning is augmented with CeSAR, the sensor is placed at
0 = =t (Npyax — N)/(Npax — 1). Heuristically, the CeSAR angle can be seen as being placed
n radians from the center of the total angle subtending all eNBs. In order to show the effect
of an NLoS channel, each eNB is optionally contaminated with NLoS error. The overall
ratio of eNBs contaminated by NLoS error is given by £ (the notation {¢ indicates CeSAR
is used). Here, NLoS error is modeled as (ci — w) in accordance with the channel model
presented in Chapter 2 [7], [27], [30]. For these simulations y; = ¢ = 50 m, Vi. The results
of Monte Carlo trials with each N, with and without CeSAR, and for different £, are shown
in Figure 8.12. In this case, position estimates are calculated with the AMLE presented in
(7.11) and (7.12).

The left pane of Figure 8.12 first demonstrates the efficiency of the AMLE due to its
congruence with the CRLB#4. We also see that for these geometries, RMSE accuracies
from ~70 m to =35 m are possible. It is evident that, at first, increasing N realizes

significant gains which become less significant as N becomes large relative to N,,;,. As { is

44The CRLB here and in the subsequent study have been adjusted using Sheppard’s correction for quantized

2 _ 2 2
RVs such that ORB = Thatent T 7 /12.
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Sensor

Figure 8.11. The experimental setup for real-world TA data

increased, as expected, performance decreases and the channel model prevents an unbiased
estimate; hence, the CRLB is not attained. However, it is notable that even in heavy NLoS

environments ({ = 2/3) RMSE accuracies of 95 m to ~50 m are possible.

The right pane of Figure 8.12 shows the performance as RMSE with and without CeSAR
augmentation for two levels of NLoS contamination . In both cases CeSAR provides
modest gains of approximately 5 m. When NLoS contamination is increased to { = 1/3,
performance decreases overall by 10 to 20 m and the relative performance increase of
CeSAR remains constant. For both cases of £, the modest increase in performance is
explained by the minimal effect of change on the angular geometry when the CeSAR sensor
is included. Because the sensor is placed roughly parallel to the mid-line axis of the eNBs,
CeSAR has a limited contribution (cf. (6.5)). We will show in the next experiment how the

sensor can be placed in order to maximize its effect.

Finally, note that in both panes the magnitude of location accuracy demonstrated is well
under that of 7. To understand this, first consider the case when N = 1 and when the
eNB can perfectly determine the UE distance. Here, the error in the distance estimate is
minimized when p is chosen at the middle of the TA annulus such that the error is uniform,
U ~ [-7/2,7/2]. From this it can be shown that the associated mean error is ~ 19 m
and the associated RMSE is ~ 22 m. Thus, the demonstrated accuracy is well above the
minimum distance estimation accuracy. However, we also note that, assuming no restriction
on Npax, it is conceivable to obtain RMSE accuracy lower that 22 m when GDoP < 1 (cf.
Chapter 6).
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Figure 8.12. The performance of the TA-based MLE in various levels of NLoS
contamination ¢ with optional CeSAR augmentation ({¢). Source: [74].

8.3.2 The Effect of Infrastructure Geometry

We now change the experimental setup to that shown in Figure 8.13 in order to examine the
efficiency of the AMLE with real-world TA data and to highlight the capacity of CeSAR to
negate poor GDoP effects. In all studies, there are N = 3 eNBs arranged on a circle centered
on the UE of some radius r. The eNBs all share an angular separation of . When the
CeSAR sensor is used, it is positioned at § = 37/4 also on the same circle with radius r. For
each scenario a different angular separation between the eNBs 8 € {n/10,37/20, /5, n/4}
is used. Note that 0 starts off small such that the eNBs are tightly clustered and share a
similar angle to the UE. At 6,,x = 7/4 the third and first eNB are separated by 260 = /2
and the eNBs are more dispersed than at 6, = 7/10. Because in an actual LTE network
deployment the number of serving eNBs and o do not vary significantly, here we show
positioning accuracy as a function of infrastructure geometry by iterating through the various
values of 8. This experiment is conducted with both synthetic and real-world data. For
synthetic TA data, in line with field measurements presented in Chapter 4 [21], the observed
o =~ 50 meters for all serving eNBs. Also in accordance with Chapter 7, the latent data
are quantized by 7 = 78.125 meters before producing a distance estimate via (7.11). When
the real-world data are augmented with CeSAR, the CeSAR error used is the same that was
generated during the Empirical CeSAR validation presented in Section 8.2. Additionally,

the same AMLE as was used in the previous experiment is also used here.

93



eNBs
Sensor k

-

37r/4 ¢ 29 -

\f? fffff

Figure 8.13. The experimental setup for all real-world TA data. Source: [29].

The results of these studies, with and without CeSAR augmentation, are presented in Fig-
ure 8.14 alongside the theoretical lower bound derived in Chapter 7 for each 8. Additionally,
for each 6, real-world and synthetic data are used. First, we observe close agreement with
the results and the theoretical lower bound for both synthetic and real-world data further
validating the analysis and the efficiency associated with the AMLE. Second, we see close
agreement between the simulated data and real-world data. This agreement validates as-
sumptions we have made regarding the nature of the data in general which follow from the

theory of quantized random variables.

Note the trend of localization accuracy. When 6 is small and CeSAR is not used to
augment the position estimate, the RMSE is relatively high. However, as 6 increases to
its maximum value, the RMSE decreases. This agrees with the trend expected given in
(6.5). Thus, the existing network geometry is seen as a strong influence on the positioning
performance. In this study, the accuracy varies on the order of 50 meters depending on
the infrastructure layout. However, when the CeSAR sensor is included and strategically
placed, the dependence of localization accuracy on network geometry can be essentially
negated. This illustrates one of the main strengths of CeSAR enumerated in Section 8.2
in mitigating the effects of poor network geometry. The strategy used to maximize the
geometric effect of CeSAR is to place the sensor as orthogonal to the remaining eNB angles
as possible. Finally, we demonstrate with real and synthetic data that RMSE accuracies on

the order of 40 meters are possible which agrees with previous studies.

Through the two studies presented here, we have shown the AMLE to be efficient relative
to the CRLB. We have also demonstrated theoretical accuracies on the order of tens of

meters, shown how accuracy is affected in NLoS scenarios, for various N, and demon-
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of RMSE are presented in this figure. Results realized from simulated and
real-world error data are presented. Source: [29].

strated CeSAR’s resilience in network infrastructure where geometry negatively affects

precision.4>

45This section has been revised from [29].
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CHAPTER 9:

Conclusion

In this work, we have evaluated the TA parameter as a means to position estimation in cellular
networks. This investigation has shed light on the TA both as a security vulnerability and
under-leveraged network parameter alike. Additionally, we showed how more information
can be extracted from the TA in order to provide a refined estimate through the CeSAR
method.

The investigation was conducted through protocol analysis, statistical analysis, simulation,
and field experimentation. The method of evaluation began with protocol analysis where it
was found that TA-based geolocation and a method of refinement, via CeSAR, was possible.
Next, the position estimate as gleaned from the TA was statistically analyzed in order to de-
termine the feasibility, in the sense of accuracy, of the method. Significant statistical findings
led to simulations under various scenarios of interest such as legacy network deployments,
handover scenarios, and heterogeneous network deployments. Next, field experimentation
was conducted in real-world network deployments. These experimentation results uncov-
ered parameters associated with real-world TA issuance such as error distribution shape and
statistics. These real-world errors were used in simulations to demonstrate the statistical
efficiency of TA-based positioning and further investigate performance. Finally, CeSAR

was also investigated in a real-world wireless channel in an SDR testbed.

9.1 Significant Contributions

The results of this work have made several notable contributions. Specifically, those
contributions include protocol analysis leading to the CeSAR refinement method, framing
the TA as a quantized random variable to derive a MLE and corresponding lower bound on
positioning error, and extensive experimentation, which included field data, that validated

analytical results.

97



9.1.1 Cellular Synchronization Assisted Refinement

The contribution of the CeSAR method was realized from an in-depth analysis of the LTE
protocol. In this analysis, it was discovered how the TA value could also be passively
leveraged to find the UE distance from a local sensor. When combined with the traditional
eNB-UE distance, which is more explicit in a TA, this information added a crucial dimension
to the system of equations otherwise typically used in TA-based positioning. The protocol
was also used to show that the observation needed in CeSAR was feasible without the need
to bypass encryption making the contribution of CeSAR even more potent. A corollary of
CeSAR was that the reconfigurable nature of the method also allowed the user to mitigate

problems associated with GDoP.

CeSAR was framed as both a security vulnerability and a network performance multiplier.
From the perspective of a security vulnerability, the CeSAR operator would be a third party
extra-network operator. It was shown how this operator could locate a target reasonably
accurately with a low chance of detection since the method is entirely passive. Conversely,
from a network perspective, the method was shown to be a performance multiplier since,
in contrast to current positioning protocols (cf. LPP), it is passive and does not introduce

additional network traffic in developing a position estimate.

9.1.2 Statistical Analysis of the Timing Advance

The analysis of the TA first began in the LTE protocol where TA behavior such as uncertainty,
issuance frequency, and reasons for issuance were investigated. Once the TA was found as a
tenable means for positioning, it was next analyzed statistically by casting it as a quantized

RV. This was the impetus for several important ideas.

First, it was shown in Theorem 1, that regardless of the target position within a TA annulus
¥, the latent normal error distribution could be used to model the associated error. This
is significant since the exact observed error distribution is discrete, making further useful
analysis untenable. However, due to the result of Theorem 1, an exact MLE for TA-based
positioning was shown to be equivalent to the MLE for normally distributed error. A direct
and significant consequence of the MLE, which was expressible in closed form, was a lower
bound on the RMSE of the TA-based position estimate.

While the MLE was significant, we noted that it was dependent on information not likely
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known a priori and levied a heavy computational burden to evaluate. Therefore, an AMLE
was developed to demonstrate efficiency in TA-based positioning. The efficiency was shown
with both simulated and real-world TA data. Demonstrable efficiency then allowed us to

use the lower bound to predict asymptotic behavior of TA-based MLE positioning.

Also, notable was the comparison of the statistics of the TA in GSM versus LTE. We showed
that, under certain assumptions, Theorem 1 did not apply to the TA in GSM whereas it
does in LTE. This was significant because it shows that the tighter alignment required in
LTE ultimately also steered the protocol around a statistical corner where not only is better
accuracy possible, but the accuracy will be consistent regardless of the UE position within
the TA annulus. In contrast, this consistency cannot be expected in GSM and the accuracy

of the position estimate will show strong dependence on the annular offset.

9.1.3 Field Experimentation

The first goal of field experimentation was to understand how the TA behaves in the wild
in order to develop a better TA model in simulation. To this end, TAs were collected in
four cities spanning the east and west coasts of the United States. TAs were observed in
real-world network deployments in Baltimore, MD, Annapolis, MD, San Diego, CA, and
Monterey, CA. The TAs were observed in environments spanning suburban to dense urban
environments, across several bands, and for stationary and moving UEs. This allowed us to
validate in situ that the LTE TA was issued frequently enough for a positioning application
and that the associated error statistics afforded an accurate estimate. Observation of error
statistics allowed us to build a realistic LTE TA error model suitable for use in simulation
that takes into account channel type. We were also able to validate with field data the

analytically derived Gaussian equivalency.

As stated in Chapter 2, most previous TA-based studies in the literature made two critical
assumptions about TA behavior: that the additional error introduced by the TA was uniform
and that error was independent of the UE location within the TA annulus. Those studies
that did use real-world TAs were not focused on evaluating the TA per se. Our extensive
field experimentation validated the assumption of the uniformity of the error, however, we

also showed that the model is better served as normal since the error associated with the
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eNB’s estimate of the UE distance is dominant relative to the annular rounding in LTE#.
Furthermore, we validated the second assumption of the independence of the error model

with the UE annular offset ¢ both through analysis and field experimentation.

Finally, our field experimentation with CeSAR in conjunction with real-world TA values
lent validity to the simulated results and showed that an efficient position estimate could be
made when CeSAR was leveraged to improve the position estimate. Also notable is that
we demonstrated the achievable performance inside a real-world LTE network deployment

with entirely empirical data.

9.2 Future Work

This work presented contributions which, when extended, offer the opportunity for further
exploration. Specifically, we suggest extension of this work in four areas: three dimensional
positioning, uplink observation modeling, heterogeneous network observation, baseband
processor performance evaluation, and studying the use of the C-RNTI to best anonymize

transmissions.

9.2.1 Positioning in R>

Here we propose further work which seeks to provide a position estimate in three dimensions.
In dense urban environments the UE is not always at ground level due to mobility in
skyscrapers, high rises, and other urban clutter. Thus, a TA-based position estimate in R?

may result in significant error for a UE which is located high above ground level.

Including a CeSAR sensor, particularly at the base of a structure in which a UE may
be located, could have two potential benefits which are similar to advantages of CeSAR
explored in R2 in this work. First, and most obvious, is that adding an extra dimension to
the position estimate will always improve accuracy (assuming the error associated with that
measurement is at least as good as the measurements currently defining the existing system
of equations). Second, if a UE is suspected to be in a particular tall structure, placing

the CeSAR sensor at the bottom of the structure realizes an approximately orthogonal

46This is another intuitive but more general way of stating the necessary conditions for Theorem 1 and QT2
to apply.
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measurement relative to the UE-infrastructure geometry. As seen in this work, this will

minimize the effects associated with GDoP.

9.2.2 Uplink Frame Observation Modeling

In this work, uplink frame observation was done with a BPSK PN sequence and a matched
filter. In a realistic application, the uplink burst will be transmitted after further being
OFDM modulated. OFDM transmissions will be more robust in a fading channel and thus
have the potential to improve the performance of CeSAR augmentation. Furthermore, the
PN sequence used was optimized to improve correlation performance via a LFSR. Real-
world LTE frames will not necessarily have these favorable correlation characteristics, thus

the resulting correlation will not be as exact.

Specifically, the theory associated with developing an optimal detector of the UE frame
(e.g., the Neyman-Pearson detector) would significantly complement the CeSAR method
and provide further insight into expected real-world performance. Of particular interest
would be leveraging the cyclic prefix and regular signals with specific periodic transmissions

such as UE-generated pilot tones to improve detection.

9.2.3 Heterogeneous Network Ecology

At the time of this writing the author is not aware of any fully deployed heterogeneous
network in the United States. Therefore, in this work, performance in the presence of phys-
ically disparate carrier aggregation was evaluated either entirely in simulation or empirical
data were collected from individual eNBs online then combined offline in post processing

to mimic a heterogeneous network deployment.

In the near future it is likely that LTE release 11 characteristics will begin to make an
entrance in the currently deployed architecture. Studying the behavior of the TA in a real-
world heterogeneous implementation would be invaluable. In particular, of interest would
be the statistics of TA error associated with SCells, whether those statistics are similar
to the PCell statistics, and the use of these errors in case studies to validate performance

characteristics.
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9.2.4 Effect of the Baseband Processor

In this study TAs were issued to and observed by two different test phones both operating
with the Qualcomm Snapdragon chipset. A comprehensive statistical study of the TA in
conjunction with different chipset vendors and versions would be of interest. Among general
chipsets available on the market, the Samsung Exynos and Qualcomm Snapdragon are the
most pervasive and would provide a starting point in terms of the survey. Within these
two chipsets evaluating different versions would also be of interest. Ultimately, building an

understanding of how TA-based positioning varies with chipset would be valuable.

9.2.5 Vulnerability in the LTE Software Address Space

The LTE software address space was presented in this work as a weak component of a LPPM.
To this end it serves to anonymize transmissions sent to a specific UE as the C-RNTT stands
in as a software address in place of the permanent address (IMSI) assigned to the UE.
Evaluating the ability to link a specific user to a C-RNTI would be of particular interest.
Methods that could be leveraged may include C-RNTI chaining and deanonymization

attacks.

C-RNTI chaining is a method of UE attribution to a C-RNTI that follows that user through
initial network negotiation. By observing the initial C-RNTI issuance and then following
the user as different C-RNTTIs are issued, a valid UE to C-RNTI mapping can theoretically
be maintained. As discussed in Chapter 2, several methods have proven effective at linking
anonymous data to specific users. Evaluating their efficacy in the LTE software address
space would be of interest both in simulation and in real-world network deployments. By
evaluating the inherent vulnerability in the C-RNTI anonymization schema, recommenda-
tions to improve the method in the context of optimal C-RNTI lease time and initial C-RNTI

issuance.

102



APPENDIX A:
Histograms Representing the Error Associated with

TA-Based Distance Estimation
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Figure A.1. Location A error histograms are presented in this figure. Loca-
tion A is characterized as a dense urban environment. Adapted from [21].
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Figure A.2. Location B error histograms are presented in this figure. Loca-
tion B is characterized as a dense urban environment. Adapted from [21].
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APPENDIX B:
Proof of the Lower Bound for an Unbiased Estimator

In this section, we provide the proof of the relationship described by (6.2) and (6.1). The
derivation is adapted from [75].

Definition A1: An admissible estimate is the estimation of a parameter on which obser-

vations of a RV depend such that the support of the RV density does not depend on the

parameter to be estimated.

Theorem Al: Suppose X = {X1, X», ..., Xy} are a set of observations of the RV x which

is parameterized by A and A(X) is an unbiased estimator of A. Then

-1
E{(Z(X)—/l)z} > —E{%} (B.1)

if A(X) constitutes an admissible estimate.

Proof: By definition A(X) is an unbiased estimator so the expected value of the estimate is

given by
b
/ AX)p(X|A)dx = A (B.2)

where the limits of the definite integral [a, b] span the support of p(X|1). Next taking the

derivative of both sides w.r.t. A

0 b
— AX)p(X|)dx =1 (B.3)
ol J,
and from Leibniz’s rule
/bii(X) (X|D)d +%Z(b) (blﬂ)—%i( )p(ald) =1 (B.4)
oAt P TP g Pl = '
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but, by Definition 1, the latter two summands evaluate to zero since

da

=0
aA
o _ . (B.5)
o1
Therefore, we have 5
/J(X)ﬁp(Xl/l)dx =1 (B.6)

where we have dropped the limits of the integral for convenience.

Lemma A1: For an admissible estimate of the parameter A

0 0
31 p(x|)dx :/(')_/lp(xl/l)dx =0. (B.7)

Proof: 1t follows from Definition 1 and Leibniz’s rule that

0 0
71 p(xl/l)dx—/ﬁp(xM)dx. (B.8)
We can then show that 3 3
— Ddx = —1= B.
a1 p(x|A)dx 31 0 (B.9)

which follows from the definition of a probability density. [J

Continuing with the proof of the theorem, we can then let

-9 0 - )
//l(X)a—/lp(Xlxl)dx—//la—/lp(XI/l)dx :/(/I(X) ~ 1) S7P(X|Ddx =1 (B.10)

and

~ 1 0
AX) -4 — (p(X]4 X|)dx = 1. B.11
[ (300 = 2) — 22 (K1) pX L B.11)
Now substituting the relationship

0

0 1
2 Jogp(X[A) = —— %
ogp(X|d) p(X[1) 92

o P(X|2) (B.12)

106



we have that 5
[ (2000 = ) 5% Gogp(X10) pX1)x = 1.

Using the definition of expectation the relationship becomes

3 9
E{(/l(X) - 1) - (logp(XI/l))} = 1.

The Cauchy-Schwarz inequality4 then gives

E{(Z(X) - /l)z}E{(%logp(Xl/l))z} >
E{(Z(X) - A)Z}E{(%logp(Xlxl))z} > 1.
E{(Z(X) - 1)2} > E {((% logp(Xlxl))z}_l .

Lemma A2: For an admissible estimate of the parameter A

0 2 92
E{(ﬁlogp(XM)) } - —E{Wlogp(xu)}.

Proof: From the property of a probability density we have

/p(XI/l)dx = 1.

Now differentiating both sides of the relationship

o
— dx = 0.
31 p(X|A)dx

Again, invoking Definition 1 and Leibniz’s rule the relationship becomes

) )
— [ px = [ —p(x = 0.
a1 p(X[)dx /MP( |4)dx =0

YTE{U}E{V?} > |[E{UV}|? [48].
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2
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We now use the relationship (B.12) to write

/Glogp(Xl/l)

a1 p(X|)dx =0 (B.22)

and again differentiate both sides of the equation to realize

9 [ dlogp(X|d) 8 (wpgm dx=0 (B23)

o1 g1 PXIDdx = /6_/1 o1

which is again possible from Definition 1 and Leibniz’s rule. The chain rule then gives

dlogp(X|1) 0p(X|/l)d
X
1 oA

/ 9 log p(X|) =0 (B24)

7 p(Xlxl)dx+/

The relationship in (B.12) is the substituted into the second summand to realize

/ azloiigxwp(Xlﬁ)dx .\ / (’9log§/(lX|/l) alog;)/(le/l)p(Xl/l)dx _0 (B25)
/%pmam + / (W)zp(xu)dx =0 (B.20)

/ (W)zpamw: - / wpaum (B.27)
E{(alogg/(lXI/l))z} _ _E{azloiz(zxu)} . (B.28)

To finish the proof of the theorem we use the result of Lemma A2 in (B.17) to arrive at

1
E{(Z(X) - 1)2} > —E{%} . m (B.29)
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APPENDIX C:
Proof of the Maximum Likelihood Estimate and the
Cramér-Rao Lower Bound for Source Localization
with Normally Corrupted Measurements

Theorem A2: The maximum likelihood estimate (MLE) for source localization with nor-

mally corrupted measurements is given by

i=1 di -0
N A (C.1)
Z (di = di)(yo — yi) 0

d; B

when o; = o, Vi and the source position is py = [xo, yol” .

Proof: Since the measurements d are corrupted by Gaussian noise we can define the joint

error distribution as

N 1 ~(d;=d))
p(d|d) = e Wi . (C.2)
L_l[ 2ro;
The resulting log-likelihood function is given by
N 7 2
5 —(di — d;
logp(dld) = )" ~log(V2rar) + G (C.3)
i=1 207
When we let o; = o, Vi the log-likelihood function is simplified to
N 7 2
n —(d. - d:
logp(d|d) = NC+ )’ (TZ’) (C.4)

i=1

where C = —log(V2no) is a constant. The MLE P will then be the location p = [x, y]”
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that maximizes log p(zf |d) such that

p= argmaxlogp(a?ld). (C.5)
P

The maxima of (C.5) can then be found by setting the first derivative equal to zero and

solving for p.

Lemma A3: The partial derivative of the distance, d, with respect to p is

0 (x — x;)
—di = —— C.6
i a (C.0)
and 5 ( )
y—y
—d; = ———. C.7
oy 4 (C.7)
Proof: Let
di =llp-pill
(C.8)
= x4 (g - i)
then by the chain rule
9, _ 20x = xi)
dx 2\/()6 - xi)z + (y - yi)2 (C9)
(x —x;)
==

The partial derivative with respect to y follows from the same methodology. [

Now, continuing with the proof of Theorem A2, consider the partial derivative of (C.4)

with respect to x

N A
| n 0 d —(d; — d;)*?
—1 dld) = —NC _—
0x ogp(d|d) Ox +;8x 202

N (C.10)

2(d; —d;) 8
= Z — = .4
p 200 o0x

which follows from the chain rule and from the fact that the derivative of a constant is zero.
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Then invoking Lemma A3 we have that

N (di - di)(x - x;)

0 n
1 =
-~ logp(dld) ZI] =

(C.11)

The first partial derivative with respect to y can be found by analogous means. The
relationship in (C.11) can be further simplified when finding the maxima of (C.5) by
ignoring the constant =2 (assuming the condition o; = o, Vi). N

Theorem A3: The Cramér-Rao Lower Bound for unbiased position estimation is given by

CRLB = 4/tr(I"!) (C.12)

) .
I;j; =-E M (C.13)
P} 0P}

and

where

i=1 0'2d2 0'2d2
N (- Xz)(y Yi) N (y %)2
2 2

0'2d2 o'2d2

ZN (X—X[)z ZN (x— Xz)(y ’/z)
] (C.14)

when the distance measurements, d;, are corrupted by Gaussian noise and o; = o, Vi.

Proof: Consider
92 n
Inn = _E{_axz 10gp(d|d)} (C.15)

where p = [x, y]” so P¢1y = x and pyy = y. The relationship in (C.15) can then be

expanded to

0 0
Iy = —E{——logp(dld)}

0xd
o1 Sdimdya-w (€10
- 3x0'2 d;
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which follows from Theorem A2. Now, again evaluating the partial derivative we have

G (di = di) (x = xJ:LiiC—df)(x—xz)
8)6 0'2 d; o2 ~ 0x d;
N
1 0
—;;a((dl—dl)a d,)

X (C.17)
1 0 - 0 A 0
=— ) -(di—d)—di+ (di - di) —di
0'226)6( )0x *( )ax2

N 2
1 R 9* 9
=— ) di—d)—di— | =di
o? Z( ) dx? (8)6 )
which follows from the product rule. Now substituting back into (C.16) we have

A 0> d .\
j{(di - di)ﬁdi} —-E; {(adi) }

(C.18)

which follows from the following two relationships when the expectation is taken with

respect to the RV d
a \ a \
Ei |\ 5=di| ¢ =24
d{(@xd) } (6xd)

N 92
E;¢(di —di)—d;; = 0.

The former relationship is clear since the expectation is take over a constant relative to d.
The latter relationship follows from the fact that E ; {cf,- - d,} = 0 if the estimate is unbiased.

_E{QLN (c@—d»(x—x,-)}:—l

ox 0'2 =1 dl'

(C.19)
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Finally, we use the result of Lemma A3 to expand (C.18) to
0, 2
ox '

2
((x ;.x")) (C.20)

1

o2 4
l

M=

Iy =
1

1
o2 4
l

M=

1

(x — x;)?

—
d;

I
Q=
M=

Il
—_

1

This result can be easily extended by Lemma A3 to show

N 2
1 (y — i)
1{2,2} =3 - (C2D1
o ; di

The off-diagonal elements of I can be found by replacing the second derivative in (C.16)

with A
| TS, :_E{iiz (di_di).(x_xi)}. C22)
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Then, substituting this result into (C.22) we have
N

9 1w (di-d)x-x)| -1+ A d 9 d \(9
‘E{azz 7 } = - g -kl (5a) (779

i=1

(C.24)
where the last step follows from the results enumerated in (C.19). Finally, using the results

of Lemma A3 we have

N

1 d N[0 ,\_ 1< G-x)y—um
Ly (@dl-) (a—xdi) -y (€25)

o“ 4
i=1 i=

Note that the matrix I will be symmetric, therefore, I1oy = I3, W
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APPENDIX D:

Derivation of the Maximum Likelihood Estimate
Associated with py(x) * py(x)

In this section, a derivation of the convolution py (x) * py(x) is given. To begin, recall

1 -?
pn(x) = e2? = N(0,07) (D.1)
V2ro
and |
pu(x) = ;I[—T/Z,T/Q] (x) (D.2)

where Ij_; /2 7/21(+) is the indicator function with support € [-7/2, 7/2].

Next, using ¢ as the dummy variable for the convolution we have

1 x+7/2 1 —(1)?
PN (X) * py(x) = —/ e dr. (D.3)
T x—7/2 2no

Evaluating the integral we have

1 x+1/2 1 7(,)2 1 t x+7/2

—/ e di = - (—)

T Jx—1/2 2no T 0 Jlx—71/2 (D.4)
:l( (x+r/2)_q)(x—7’/2))

T o o
where
O (x_“) D.5)
o

is the cumulative density of N (i, 0°2).

Next, to find the maximum-likelihood estimate (MLE) of py(x) * py(x) for positioning
applications consider

p = argmax log p(tild) (D.6)
P
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where

N
logp(did) = ) log p(d;ld;). (D.7)
i=1

andd = [dy, ds, . . .,dy]" is the set of actual distances to the N eNBs, d = [d}, do, . . ., dy]T

is the set of measured distances to the N eNBs. The above density given in (D.4) can be

reformulated for the positioning problem with non-zero mean as

p(dild;) = 1 (q) (M) _® (w)) ) (D.8)

T (o] g

The corresponding MLE can then be found as

dlogp(dld) _
o0x a

N

1 B \ , 0
—§ 7 i i—di—7/2,0%)—d,
oyl (d;) (N(d di—1/2,0 )Bxd

-N(d;-d; +7/2, Uz)id,-)
0x

A (D.9)
dlogp(dld)
oy B
| < 0
- D F Ny (N(dl- —di - 1/2,0%)—d;
T oy
A 2 6
—N(di —-di+7/2,0 )—d,
dy
where we have assumed for simplicity that o; = o Vi, and
di —d; — /2 d; —d; +7/2
F(d;) = (#) —-® (&) (D.10)
o o
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Then continuing the differentiation and invoking Lemma A3 we have that

dlogp(d|d) _
0x B

1Y -1 (x —xi) o )
= > F ) (N (i + di = 7/2.0)
TS di

~N (i + d; +7/2,07))

. (D.11)
dlogp(dld) _

dy

N
IS ) I (N G+ dy - /2,0
T o d,’

~N (i +d; +1/2,0%)) .

Setting these gradients to zeros yields the exact MLE p for an error characterized by

pn(x) * py(x). B
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APPENDIX E:
Proof of the Variance of N/ at Extrema of 7

]' m var 4 T2 l : ]

2

v I8 the variance of the latent RV.

where o

Proof: Recall that
1 d*p
E{N"*} = —

N’(¢)‘ B2
jkoodek s 2

where Py (¢) is the characteristic function (CF) of N’ [49]. Therefore, the second moment
is explicitly given by

d*Py;
E{N/Z} - _ N2(¢) (E3)
e |y—o
since j =2 = —1. Recall also that
Pno($) = > Al - 27n/7). (E4)
Lemma A4: If U is uniform then its CF is given by
Py (¢) = sinc (%) . (E.5)
Proof: Note thatif U ~ %I[—T/Z,T/Z] (x) then
1 T/2 ]
Py(¢) = = / e/ dx
TJ-z2
1 x=T1/2
S (E.6)
J¢T x=—71/2
1 ( -jgt jﬂ)
= - e 2 —e 2
jgt
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2sin(¢7/2)
ot

_ sin(¢7/2)

- ¢T)2

= sinc (%)

where the last step follows from the definition sinc(x) = sin(x)/x and thus implies

(E.7)

zero crossings at ¢ = 2wk /T where k € Z. Note also that Py (0) = 1 which satisfies
the requirement that [ py(x)dx =1. O

Lemma AS: If N is normal then its CF is given by

Pa(g) = 5 (E.8)

Proof: Note that if N ~ N (0, %) then

1 =2
Prn(9) = / \/_6202 e 9% dx

o V21

= /_: U\jﬂeﬁcos((ﬁx)dx (E.9)

~(¢p0)?
=e 2

The second step of (E.9) follows from

/a e Xdx = /a cos(x)dx +j/a sin(x)dx = /a cos(x)dx (E.10)

a a —a a

and the last step in (E.9) is given by Abramowitz and Stegun [76]. Note also that
Pxa(0) = 1 which satisfies the requirement that f Pv(dx=1. O

Next, continuing with the proof of Theorem A4, let 7 — 0 so that Py/(¢) = A(¢) =
Py (¢)Pp (@) (cf. Chapter 6). Now to calculate the second moment, by (E.3), Lemmas A4

and A5, and the product rule, we have

2

- (;‘ZTSZPU(@PN(@ = —% (sinc (%) digb (e(¢T(r)2) + d%b (sinc (%)) e(‘ﬁ;)z) . (E.11)
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And again we invoke the product rule to find that

2

d
———Py(¢)Pn(¢) =

4>
_ sine (ﬂ) & (e‘(‘”f)z) & (sinc (ﬂ)) rC (E.12)
— 2(% (sinc (%)) % (e@) .

Now evaluating individual elements of (E.12) at ¢ = 0, we have that

i e—<¢2<r>2 _ 0
do =0
d
—sinc (ﬂ) =0
@ 2 lo=0 (E.13)
d? =t '
g2’ -7
$=0
d_zsinc (ﬁ) - —_7'2
d¢? 2 /l40 12

where the first three relationships follow directly and the last follows from the variance of
a uniform random variable. Using these results (E.12) can be simplified to

L @ Pn ) =0+ T (E.14)
—_ =g _—. .
dg2 VTN 12

Finally, it is straightforward to verify that

2

lim o2+ % = o2, (E.15)

Note that the assumption that used to arrive at (E.14) was that Py (¢) = A(¢) which
requires that T < € where € is some sufficiently small number (cf. Chapter 6). W
Theorem AS:

lim var{N'}| =0 (E.16)

T—00 W=0
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and
lim var {N'} = 0o, (E.17)
T—00 y=7/2
Proof: Consider the case where T — oo and recall that pa(x) = d(x) if there is no annular
offset ¢ in the sampling function such that ITI;(x) (cf. Chapter 6). It then follows from the

definition of the Fourier transform that

Prni(¢) = / S(x)e /P dx = 1. (E.18)
It is also easy to verify that
d2
lim var{N'} = —1 =0. (E.19)
T—00 d¢ $=0

Lemma A6: If the annular offset is ¢ = 7/2 then
1 1
PN (x) = Eé(x +7/2) + Eé(x -7/2) (E.20)

when T — oo,

Proof: Let the impulsion train be I11.(x — 7/2) so that the annular offset is ¢ = 7/2
which is the worst case ¢ in terms of the resulting variance of N’ when 7 — oco. The
resulting shifted version of py(x) can then be approximated as (E.20) for sufficiently

large 7.

To see this recall that py(7) = X, @6(x — nt) and consider summands where n #
0,1. Recall that when the annular offset ¢ # 0, then (6.13) can be expressed as
a, = '[®(nt+71/2-¢) — Dt —1/2 — )] when d = 0. Thus, when ¢ = 7/2,
a, = a’'[®(nt) — ®(nt — 7)] which is calculated explicitly by

a, = /nT pa(x)dx. (E.21)

-7
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Next note that

= / pn(x)dx = 0. (E.22)
VYn<0 -

(o)

nt
lim / pa(X)dx
=0 Jnr—1

It then follows from the fact that py/(x) is even that

nt o0
lim/ par(x)dx =/ pn(x)dx = 0. (E.23)
=% Jnr—1 Vn>1 0
Conversely, when n € {0, 1}
nt 0 1
lim/ par(x)dx :/ er(x)dxzi (E.24)
T2 Jnr—1 n=0 —00
and
nt [} 1
lim/ pa(x)dx :/ PN (X)dx = <. (E.25)
T2 Jpr—1 n=1 0 2
O

Next, continuing with the proof of Theorem A5, the resulting Fourier transform of (E.20) is

Py (¢) = /OO (%(5()6 +7/2) + %6(x — 7-/2)) eI dx
_ %e—jwz N %emr/z (E.26)
= cos(¢1/2).

Next substituting (E.26) into (E.3) we have

_dz%ﬁ/z(@ $=0 ) _57?2 oy #=0
_ _%gsm(mﬂ) so (E27)
_ %2005(¢T/2)L:0
2
-
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Finally, letting T — oo we have

= lim— =c0. N (E.28)
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APPENDIX F:
Proof that Pa//(0) = Ag(0), Yoy when 7 =€

Theorem A6: If py (x) is normally distributed with variance o> then when T = €

Prn(9) = Ao(¢) (F.1)
for sufficiently small €.

Proof: Let ¢ = 0 and consider the definition

Pro(9) = D Au(¢ = 27n/7) (F.2)

where it was previously shown in Chapter 6 that

)2

A(d) = e~ 5 sinc (¢—2T) (F3)

under the assumption that px (x) is normally distributed with variance o> and py(x) is
uniformly distributed € [-7/2, 7/2]. Each copy of (F.3) represented in the sum (F.2) as
shifted from the origin by 2zn/7 (observe also that (F.3) is even).

It is clear that 5
lim =2 = oo, (F.4)
0 T

Therefore, all terms in (F.2) where n # 0 will be centered at +co. Now when 7 = € the

summand when n = 1 is centered at 27r/e which ~ oo for sufficiently small €.

Lemma A7:
¢lir£1 A(p) = 0. (E.5)

Proof: Consider the Gaussian multiplicand in (F.3) which is piece-wise monotonic

about its mean and independent of 7. Note that at its extrema

(b2 (b2
lim e~ 3" = lime~ 2~ =0, (E.6)

¢p——0c0 Pp—o00

125



Therefore, from the property that

lim f-h = (lim f) . (lim h) (E7)
X—2Z X—Z X—2Z
the lemma follows. [
Now for the shifted versions of (F.3) we have that
—((¢p—2mn/e)o 2 —_ 2 —(9oo 2
lim e~ 2% ginc (M) = lim e~ 7 sinc (ﬁ) =0 (F.8)
¢—0 2 nzo 90 2 /]z0

where the equality to zero follows from Lemma A7. Therefore, A,(0) ~ 0, YA, where
n # 0 and the contributions in the sum of (F.2) by A, where n # 0 are effectively null. In

other words

ZAn(¢—2ﬂn/6) = 0+0+A40(0)+0+0+--- (F.9)
n $=0
and it can thus be concluded that
Pl gt0=c = ), An(0 = 27n/€) = Ap(0) (F.10)

when ¢ = 0. Now let ¢ # O then (F.2) becomes

P ($lyz0 = €7 > An(g = 27n/7) (F.11)
n
and ,
A() = 1% ™5 sinc (%) (F.12)
Here, (F.9) still applies and so Lemma A7 is still valid for ¢y # 0. Now
PN gmprmeyso = €1 Z A,(0 =271/ €) = Ag(0) (F.13)
n

so that the theorem holds Vyy. W
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APPENDIX G:
Sufficient Condition for Var(N’) > Var(N)

Theorem A7: The lower bound on the RMSE for a RV after quantization will always be
higher than the CRLB iff
T < 340. (G.1)

Proof: It has been previously shown in Appendix E that the minimum value of Var(N’)
occurs when there is no annular offset (i.e., [L1;(x — 0)). Therefore, since this value of
results in minimum variance in the quantized RV N’ and the variance of N’ for all other
offsets such that ¢y # 0 will be equal to or larger than N, this is the only condition which

needs evaluation. The variance of N’ for ¢ = 0 is given by

Var(N') = / X2, 6(x — nt)dx

(o)

= Z (n)’ay (G.2)

& nt+7/2

= > (1)’ / px(x)dx

where ®(x) is the cumulative density of x. The first step follows from the definition of
variance of a zero mean random variable. The second step follows from f(x)d(x —a) =
f(a)é(x —a) and f 0(x)dx = 1. The third step follows from a, = fqn pn (x)dx where the
definite integral is over the interval g,. To see this recall that

pw(x) = Ml (x) (pa(x) * py(x))

D 8Gx=n7) (P (%) % pu(x))

& (G.3)
D 60 = n7) (B(x + 7/2) = D(x — 7/2))

n=—oo

o0

D 6(x = n7) (D(nT + 7/2) = D(nT - 7/2))

n=—oo
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00 nt+t/2

= Z §(x — nt) v (x)dx. (G.4)
Nn=—co nt—7/2
Therefore,
nt+7/2
a :/ pa(x)dx. (G.5)
nt—7/2

Now, as a first approximation of pa(x), assume that 7 > € so that
PN (X)1 =a-10(x + 1)+ apd(x) +a16(x — 1) (G.6)

where the subscript 1 denotes the indices of a, considered in the approximation. Applying
(G.2) to (G.6) we have

) vl o)

= o () + % () G.7)
-7
=200 ()
which leads to
2220 (_77) <2 (G.8)
Then solving for 7 we have
7 < 340. (G.9)

To begin to quantify the fidelity of the approximation given in (G.6) let it be extended to
PN (X)2 =a0(x +27) +a_10(x + 1) + apd(x) + a10(x — 1) + ax6(x — 27). (G.10)

In this case the variance is given by

3 - 3
Var(N')y = (=27)2® (TT) (—1)2 (cp (%) - q>( T))

+«f<@<3;>@<;>>+<zf>2<w)<3;>>
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1 1.5 2 2.5 3 35
Tlo

Figure G.1. The error associated with using the first-order variance approx-
imation parameterized by 7 is presented in this figure. Both the resulting
error and 7 are normalized by o .

Now in order to understand when the first order approximation given in (G.6) is no longer
valid, consider the difference between the two approximations of variance

Var(N'); = Var(N'); = 67°® (%T) : (G.12)
The resulting error between the two approximations of Var(N’) is shown in Figure G.1. By
inspection, one finds that the initial first-order approximation is appropriate for finding the
upper bound on 7 since the error associated with py-(x); is negligible. Specifically, the
error associated with using the first-order approximation at 7 = 3.4 is 1.1779 x 1075, One
may thus conclude that further approximation of the bound is not necessary and that the
sufficient condition for Var(N’) > Var(N) is 7 < 340 Vy. R
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APPENDIX H:
Link Budget for Empirical CeSAR Validation

When conducting the empirical CeSAR validation accurate distance estimates were highly
dependent on the strength of the received signal. This appendix details the solution approach

taken to ensure the received signal was strong enough to provide a distance estimate.

Among the challenges associated with the hardware was inter-chain leakage, transmit power
limitations, and large losses associated with free space transmission and cable propagation.
The transmit and receive chains had an approximate isolation of 40 dB, therefore, if the
received signal was not strong enough the leakage signal would dominate and the measure-
ment would be corrupted. The resulting distance estimate would be zero meters since there

is a negligible propagation delay for the leakage signal.

Additionally, the USRP transmit and receive gain variables are not well defined and do
not necessarily translate to dBm#®. Our measurements indicated the USRP gain values
corresponded to the transmit powers via the relationships shown in Table H.1. The transmit
power was measured with a spectrum analyzer as the peak power at the transmit frequency

for a BPSK sequence.

Table H.1. Correlation between USRP gain values and actual transmit pow-

ers
USRP Gain Value | Transmit Power (dBm)
0 -10
20 9.65
26 15.41
30 18.32
40 18.64

In order to determine the link budget associated with the experiment in Chapter 8, we now
enumerate the losses associated with the system used which is shown in Figure H.1. First,
the loss associated with the coaxial cable was given by the manufacturer as -12.6 dB/100 m.

For the 150 m length of cable used in this experiment the total loss is theoretically 18.9 dB

48In other words, a transmit gain of 20 # 20 dBm.
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Cable Power Tx Antenna
USRP Assembly Amplifier 3 dBi
20 dB 30 dB !
Wireless Rx Ant
Channel X Antenna USRP
36y dB 3 dBi 40 dB

Figure H.1. The link budget of the CeSAR validation experiment

and was measured at ~ 20 dB.

The loss associated with wireless transmission L can be calculated as
drd
L = 10y log (%) (H.1)

where v is the path loss exponent, d is the distance of the wireless channel, and A is the
wavelength. When transmitting at 915.1 MHz for a 100 m wireless channel this results in a

path loss of =72 dB to ~143 dB assuming a path loss exponent of 2 and 4 respectively.

The overall system loss was overcome with a medium power amplifier on the transmit
antenna and a low noise amplifier on the receive antenna. The signal is first attenuated by
the cable assembly, then amplified by the medium power amplifier before it is broadcast at
the transmit antenna. Assuming the USRP transmits at 15 dBm (cf. Table H.1) this means
the transmit power before the Tx antenna is 25 dBm. Standard dipole antennas (3 dBi)
were used for transmission and reception. The signal then experiences path loss from the
wireless channel before it is amplified by the 40 dB low noise amplifier. The overall system

loss including amplifier gains is -16 dB to -87 dB for a y of 2 to 4 respectively.

The length of the PN sequence was also leveraged to increase the processing gain. In our
case, a 12th order LFSR was used which corresponds to 4095 bits or ~ 36 dB of processing

gain.

Assuming the USRP does transmit at 15 dBm then the received signal power, before it is

amplified by internal USRP amplifiers is anywhere from -1 dBm to -72 dBm. Finally, after
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amplification from internal power amplifiers, the resulting correlation peak is then amplified
in processing by 36 dB. Due to the potential for received signals to have very low power, the
magnitude of the correlation peak is used to validate the reception of a sufficiently strong
signal. If the correlation peak is significantly larger than the correlation noise floor a valid

distance measurement is recorded.
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GNU

APPENDIX I:
Radio Code for Generating a BPSK PN

Sequence and Synchronizing USRP Tx/Rx Chains

#!/usr/bin/env python2

# -*- coding: utf-8 -*-

HHARHRHR AR AR AR AR AR AR AR RR AR AR HH A AR RHRHHHRH AR
# GNU Radio Python Flow Graph

HHARHR AR AR AR AR AR AR AR AR AR AR AR A AHHHRHRHHHRH AR

from
from
from
from
from
from
from

from

gnuradio
gnuradio
gnuradio
gnuradio

gnuradio

gnuradio.

gnuradio.

optparse

import time

import blocks

import digital

import eng_notation

import gr

import uhd

eng_option import eng_option
filter import firdes

import OptionParser

import numpy as np

import matplotlib.pyplot as plt

import os

class gnuradioflow(gr.top_block):

def __init__(self):
gr.top_block.__init__(self, "Gnuradioflow")

biidadadadadadadodobobod oo o oo oo oo o oo oo ododo oo i g g b i
# Variables
HEHHHHBHHRBHHHRBHHRRHH IR HH BB R BB HH BB R R HH

self.samp_rate = samp_rate = 25e6
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self.constellation = constellation =
digital.constellation_calcdist(([-1, 11D, ([0, 11>, 4, 1).base()

self.center_freq = center_freq = 915.1e6

HHBBRHHH R R R AR BRHAH R R AR B AR AR H3
# Blocks
S e e e e e i
self.usrp_source = uhd.usrp_source(
"t join(C(CMY, M),
uhd. stream_args(

cpu_format="£c32",

channels=range(1),
),
)
self.usrp_source.set_samp_rate(samp_rate)
self.usrp_source.set_center_freq(center_freq, 0)
self.usrp_source.set_gain(20, 0) #Receive chain amplifier gain
self.usrp_source.set_antenna("RX2", 0)
self.usrp_source.set_bandwidth(samp_rate, 0)
self.usrp_sink = uhd.usrp_sink(
", tjoin (MY, ")),
uhd. stream_args(

cpu_format="£fc32",

channels=range(1),
),
)
self.usrp_sink.set_samp_rate(samp_rate)
self.usrp_sink.set_center_freq(center_freq, 0)
self.usrp_sink.set_gain(26, 0) #Transmit chain amplifier gain
self.usrp_sink.set_antenna("TX/RX", 0)

self.usrp_sink.set_bandwidth(samp_rate, 0)

HHHHHHHHRHRHRHBHRHRARHRHRAR AR AR AR AR AR AR AR AR AR AR AR
# Approximate measured gains for URSP gain value

# - Measured as peak value of BPSK signal
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HUBBBBB BB BB BB BB BB BB BB BB BB BB BB R R R AR AR R R R RRRHHH RS
# USRP Gain Value Actual Gain

#

#0
# 20
# 26
# 30
# 40

-10dBm

9.65 dBm
15.41 dBm
18.32 dBm
18.64 dBm

HHRHBHBHHHAHAHRRR R HAFARRRR R HHAHAARRR R H AR R RS H

HEHBHHRHHRH BB H BB HBHHRH BB HBRHRHHRHHRHREHRHHRHRRH BB HRHHRHHR RS HH
# Synchronize Tx/Rx Chains (starts chains 100ms in the future)
HEHBHHRHHRHBRHRBHBHHRHBBHBHHRHHRHBRHREHRHBRH BB HRHHRHHRHRRHRSHH

start_time=self.usrp_sink.get_time_now().get_real_secs()+.1

self
self

.usrp_sink.set_start_time(uhd.time_spec(start_time))

.usrp_source.set_start_time(uhd.time_spec(start_time))

self.digital_glfsr_source_x_0 = digital.glfsr_source_b(12, False,
®, 1) #sets GLFSR order to 12
self.digital_constellation_modulator_0 = digital.generic_mod(
constellation=constellation,
differential=True,
samples_per_symbol=2,
pre_diff_code=True,
excess_bw=0.35,
verbose=False,
log=False,
)
self.blocks_multiply_const_vxx_0 = blocks.multiply_const_vcc((0.5,
)) #prevents overloading amplifiers during Tx
self.blocks_head_0 = blocks.head(gr.sizeof_gr_complex*1,
int(samp_rate/1000)) #sets number of samples of the rxwave to
save
self.blocks_file_sink 1 = blocks.file_sink(gr.sizeof_gr_complex*1,

"/home/USER/Desktop/rxwave", False) #location to save rxwave
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self.blocks_file_sink_1.set_unbuffered(False)

self.blocks_file_sink 0 = blocks.file_sink(gr.sizeof_gr_complex*1,
"/home/USER/Desktop/txwave", False) #location to save txwave

self.blocks_file_sink 0.set_unbuffered(False)

HHARHRHRHRHRHBHBHR AR AR AR AR AR AR AR ARG AR AR R R R

# Connections

HEHBH AR HHBH AR AR AR HRRH AR AR AR H AR HRR AR AR AR H AR A

self.connect((self.blocks_head_ 0, 0), (self.blocks_file_sink 1, 0))

self.connect((self.blocks_multiply_const_vxx_0, 0),
(self.usrp_sink, 0))

self.connect((self.digital_constellation_modulator_0, 0),
(self.blocks_file_sink_0, 0))

self.connect((self.digital_constellation_modulator_0, 0),
(self.blocks_multiply_const_vxx_0, 0))

self.connect((self.digital_glfsr_source_x_0, 0),
(self.digital_constellation_modulator_0, 0))

self.connect((self.usrp_source, 0), (self.blocks_head_0, 0))

def get_samp_rate(self):

return self.samp_rate

def set_samp_rate(self, samp_rate):
self.samp_rate = samp_rate
self.blocks_head_0.set_length(int(self.samp_rate/8))
self.usrp_sink.set_samp_rate(self.samp_rate)
self.usrp_sink.set_bandwidth(self.samp_rate, 0)
self.usrp_source.set_samp_rate(self.samp_rate)

self.usrp_source.set_bandwidth(self.samp_rate, 0)

def get_constellation(self):

return self.constellation

def set_constellation(self, constellation):

self.constellation = constellation

138



def get_center_freq(self):

return self.center_freq

def set_center_freq(self, center_freq):
self.center_freq = center_freq
self.usrp_sink.set_center_freq(self.center_freq, 0)

self.usrp_source.set_center_freq(self.center_freq, 0)

def main(top_block_cls=gnuradioflow, options=None):

tb = top_block_cls()
tb.start()
th.wait()

itr = 10 # Number of automated measurements to take, keep this number
low in order to avoid burning out the Tx/Rx chains

samples = range(itr) # The measured distances will be saved here

corr = range(itr) # This will save the peak correlation value to review
in post-processing

thresh = 1500 # This is the threshold the correlation peak must exceed

in order to be a valid measurement

for x in range(l, itr+1):

i=20

z = [0]

while (z[i] < thresh or dist < 0):
tb = top_block_cls()
tb.start(Q)
tb.wait()

rx_read_complex_binary = np.fromfile(’../../Desktop/rxwave’,

dtype=np.complex64)
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tx_read_complex_binary = np.fromfile(’../../Desktop/txwave’,

rx
tx

4

i

print "trial " + str(x) +

+ str(i)

dtype=np.complex64)

rx_read_complex_binary.real

tx_read_complex_binary.real

np.correlate(rx, tx, "full™)

np.argmax(abs(z))
dist = (i - zerodist) * 299792458/tb.samp_rate #Calculate the

distance from the max correlation index

samples[x-1] = dist

corr[x-1] =

#0ptionally plot the correlation peak and the received signal

abs(z[i])

plt.plot(abs(z))
plt.show()

plt.plot(rx)

plt.show()

print "mean:

sl = open(’ /home/jroth/Desktop/Samples’,

sl.write(str(samples))
sl.close()
sl = open(’/home/jroth/Desktop/Correlation’, ’wb+’)

sl.write(str(corr))
sl.close()

if __name_

main()

’__main__’:

" 4+ str(dist) + " meters, correlation @:

+str(np.mean(samples))

‘wb+)
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